Zámbó Dániel, Schlosser Anja, Rusch Pascal, Lübkemann Franziska, Koch Julian, Pfnür Herbert, Bigall Nadja C
Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Hannover, 30167, Germany.
Laboratory of Nano and Quantum Engineering, Leibniz Universität Hannover, Hannover, 30167, Germany.
Small. 2020 Apr;16(16):e1906934. doi: 10.1002/smll.201906934. Epub 2020 Mar 12.
3D nanoparticle assemblies offer a unique platform to enhance and extend the functionality and optical/electrical properties of individual nanoparticles. Especially, a self-supported, voluminous, and porous macroscopic material built up from interconnected semiconductor nanoparticles provides new possibilities in the field of sensing, optoelectronics, and photovoltaics. Herein, a method is demonstrated for assembling semiconductor nanoparticle systems containing building blocks possessing different composition, size, shape, and surface ligands. The method is based on the controlled destabilization of the particles triggered by trivalent cations (Y , Yb , and Al ). The effect of the cations is investigated via X-ray photoelectron spectroscopy. The macroscopic, self-supported aerogels consist of the hyperbranched network of interconnected CdSe/CdS dot-in-rods, or CdSe/CdS as well as CdSe/CdTe core-crown nanoplatelets is used to demonstrate the versatility of the procedure. The non-oxidative assembly method takes place at room temperature without thermal activation in several hours and preserves the shape and the fluorescence of the building blocks. The assembled nanoparticle network provides longer exciton lifetimes with retained photoluminescence quantum yields, that make these nanostructured materials a perfect platform for novel multifunctional 3D networks in sensing. Various sets of photoelectrochemical measurements on the interconnected semiconductor nanorod structures also reveal the enhanced charge carrier separation.
三维纳米颗粒组装体提供了一个独特的平台,可增强和扩展单个纳米颗粒的功能以及光学/电学性质。特别是,由相互连接的半导体纳米颗粒构建而成的自支撑、大量且多孔的宏观材料在传感、光电子学和光伏领域提供了新的可能性。在此,展示了一种用于组装包含具有不同组成、尺寸、形状和表面配体的构建单元的半导体纳米颗粒系统的方法。该方法基于三价阳离子(Y、Yb和Al)触发的颗粒可控失稳。通过X射线光电子能谱研究阳离子的作用。由相互连接的CdSe/CdS棒中 dots、或CdSe/CdS以及CdSe/CdTe核冠纳米片的超支化网络组成的宏观自支撑气凝胶被用于证明该方法的通用性。这种非氧化组装方法在室温下无需热激活即可在数小时内完成,并保留了构建单元的形状和荧光。组装后的纳米颗粒网络具有更长的激子寿命以及保留的光致发光量子产率,这使得这些纳米结构材料成为传感领域新型多功能三维网络的理想平台。对相互连接的半导体纳米棒结构进行的各种光电化学测量也揭示了电荷载流子分离的增强。