The Ohio State University, Division of Biostatistics, College of Public Health, Columbus, OH, United States of America.
Syracuse University, David B. Falk College of Sport & Human Dynamics, Syracuse, NY, United States of America.
PLoS One. 2020 Mar 12;15(3):e0228627. doi: 10.1371/journal.pone.0228627. eCollection 2020.
The relationship between social choice aggregation rules and non-parametric statistical tests has been established for several cases. An outstanding, general question at this intersection is whether there exists a non-parametric test that is consistent upon aggregation of data sets (not subject to Yule-Simpson Aggregation Paradox reversals for any ordinal data). Inconsistency has been shown for several non-parametric tests, where the property bears fundamentally upon robustness (ambiguity) of non-parametric test (social choice) results. Using the binomial(n, p = 0.5) random variable CDF, we prove that aggregation of r(≥2) constituent data sets-each rendering a qualitatively-equivalent sign test for matched pairs result-reinforces and strengthens constituent results (sign test consistency). Further, we prove that magnitude of sign test consistency strengthens in significance-level of constituent results (strong-form consistency). We then find preliminary evidence that sign test consistency is preserved for a generalized form of aggregation. Application data illustrate (in)consistency in non-parametric settings, and links with information aggregation mechanisms (as well as paradoxes thereof) are discussed.
社会选择聚合规则与非参数统计检验之间的关系已在几种情况下得到确立。在这个交叉点上一个突出的、一般性的问题是,是否存在一种在数据集聚合时保持一致的非参数检验(对于任何有序数据,不会受到尤尔-辛普森聚合悖论的反转影响)。已经证明了几种非参数检验是不一致的,这种不一致性从根本上影响了非参数检验(社会选择)结果的稳健性(模糊性)。我们使用二项式(n,p=0.5)随机变量 CDF,证明了 r(≥2)个组成数据集的聚合——每个数据集都对匹配对结果进行定性等效的符号检验——增强和加强了组成结果(符号检验一致性)。此外,我们证明了符号检验一致性在组成结果的显著水平上(强形式一致性)会增强。然后,我们发现初步证据表明,在广义聚合形式下,符号检验一致性得到保留。应用数据说明了非参数环境中的一致性问题,并讨论了与信息聚合机制(以及其中的悖论)的联系。