Longhi Stefano
Opt Lett. 2020 Mar 15;45(6):1591-1594. doi: 10.1364/OL.386232.
In multiparticle quantum interference, bosons show rather generally the tendency to bunch together, while fermions cannot. This behavior, which is rooted in the different statistics of the particles, results in a higher coincidence rate $ P $P for fermions than for bosons, i.e., $ {P^{(\rm bos)}} \lt {P^{(\rm ferm)}} $P<P. However, in lossy systems, such a general rule can be violated because bosons can avoid lossy regions. Here it is shown that, in a rather general optical system showing passive parity-time ($ {\cal P}{\cal T} $PT) symmetry, at the $ {\cal P}{\cal T} $PT symmetry breaking phase transition point, the coincidence probabilities for bosons and fermions are equalized, while in the broken $ {\cal P}{\cal T} $PT phase, the reversal $ {P^{(\rm bos)}} \gt {P^{(\rm ferm)}} $P>P is observed. Such effect is exemplified by considering the passive $ {\cal P}{\cal T} $PT-symmetric optical directional coupler.
在多粒子量子干涉中,玻色子通常表现出聚集在一起的倾向,而费米子则不会。这种行为源于粒子的不同统计特性,导致费米子的符合率(P)高于玻色子,即(P^{(\rm bos)} \lt P^{(\rm ferm)})。然而,在有损系统中,这样的一般规则可能会被打破,因为玻色子可以避开有损区域。本文表明,在一个相当一般的呈现被动宇称-时间(({\cal P}{\cal T}))对称性的光学系统中,在({\cal P}{\cal T})对称性破缺相变点,玻色子和费米子的符合概率相等,而在破缺的({\cal P}{\cal T})相中,观察到相反的情况(P^{(\rm bos)} \gt P^{(\rm ferm)})。通过考虑被动({\cal P}{\cal T})对称光学定向耦合器来举例说明这种效应。