Gao Liheng, Feng Jundan, Xu Sijun, Shi Min, Yao Lirong, Wang Lu, Yang Zhongtian
National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textile and Clothing, Nantong University, Nantong 226019, China.
Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
Nanomaterials (Basel). 2020 Mar 10;10(3):495. doi: 10.3390/nano10030495.
Current metal nanomaterials for developing nanofunctional textiles are mostly based on metal nanoparticles (NPs) that show aqueous instability, a tendency to aggregate, and low chemical affinity to biomass textiles, leading to low nano-metal uptake during finishing, significant declines in function, and nano-pollution. Herein, we demonstrate a strategy to transform metal (Ag, Au, and Pt) NPs into homogenous hyperbranched poly(amide-amine) (HBPAA)-encapsulated NPs showing high water solubility, oxidative resistance, and affinity to biomass materials upon surface capping with HBPAA. The proposed method represents a universal, simple, clean, and efficient self-assembly technology to produce monolayered Ag-Au-Pt ternary-coated biomass textiles. The combination of Ag, Au, and Pt NPs yields a positive potential of approximately +37.12 mV depending on the metal concentration and could simultaneously self-assemble onto natural fibers, including cotton, silk, and wool, through the one-step impregnation of textiles. Increasing the temperature and concentration of the mixture favors the self-assembly process. A mixture of 30-110 mg/L Ag, Au, and Pt NPs could nearly completely anchor onto cotton, silk, and wool textiles after impregnation at 100 °C for 1 h without chemical assistance, thereby indicating the possibility of clean production. As-prepared functional cotton, silk, and wool possessed similarly high antibacterial activities, and a mixture containing over 1500 mg/g NPs inhibited 99% of the and in the sample textiles. The developed coating technology is simple, clean, controllable, and broadly applicable; thus, it could be potentially applied in functional textiles.
目前用于开发纳米功能纺织品的金属纳米材料大多基于金属纳米颗粒(NPs),这些颗粒在水中不稳定,有聚集的倾向,并且与生物质纺织品的化学亲和力较低,导致整理过程中纳米金属的吸收量低、功能显著下降以及纳米污染。在此,我们展示了一种策略,将金属(Ag、Au和Pt)纳米颗粒转化为均匀的超支化聚(酰胺-胺)(HBPAA)封装的纳米颗粒,在用HBPAA进行表面封端后,这些纳米颗粒具有高水溶性、抗氧化性以及对生物质材料的亲和力。所提出的方法代表了一种通用、简单、清洁且高效的自组装技术,用于生产单层Ag-Au-Pt三元涂层的生物质纺织品。Ag、Au和Pt纳米颗粒的组合根据金属浓度产生约+37.12 mV的正电位,并且可以通过一步浸渍纺织品同时自组装到天然纤维上,包括棉花、丝绸和羊毛。提高混合物的温度和浓度有利于自组装过程。在100℃下浸渍1小时后,30-110 mg/L的Ag、Au和Pt纳米颗粒混合物几乎可以在没有化学辅助的情况下完全锚定在棉花、丝绸和羊毛纺织品上,从而表明了清洁生产的可能性。制备的功能性棉花、丝绸和羊毛具有同样高的抗菌活性,并且含有超过1500 mg/g纳米颗粒的混合物抑制了样品纺织品中99%的 和 。所开发的涂层技术简单、清洁、可控且具有广泛的适用性;因此,它有可能应用于功能性纺织品。