文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

高分辨率光声成像技术用于观察组织对血管靶向治疗的反应。

High-resolution optoacoustic imaging of tissue responses to vascular-targeted therapies.

机构信息

Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.

出版信息

Nat Biomed Eng. 2020 Mar;4(3):286-297. doi: 10.1038/s41551-020-0527-8. Epub 2020 Mar 12.


DOI:10.1038/s41551-020-0527-8
PMID:32165736
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7153756/
Abstract

The monitoring of vascular-targeted therapies using magnetic resonance imaging, computed tomography or ultrasound is limited by their insufficient spatial resolution. Here, by taking advantage of the intrinsic optical properties of haemoglobin, we show that raster-scanning optoacoustic mesoscopy (RSOM) provides high-resolution images of the tumour vasculature and of the surrounding tissue, and that the detection of a wide range of ultrasound bandwidths enables the distinction of vessels of differing size, providing detailed insights into the vascular responses to vascular-targeted therapy. Using RSOM to examine the responses to vascular-targeted photodynamic therapy in mice with subcutaneous xenografts, we observed a substantial and immediate occlusion of the tumour vessels followed by haemorrhage within the tissue and the eventual collapse of the entire vasculature. Using dual-wavelength RSOM, which distinguishes oxyhaemoglobin from deoxyhaemoglobin, we observed an increase in oxygenation of the entire tumour volume immediately after the application of the therapy, and a second wave of oxygen reperfusion approximately 24 h thereafter. We also show that RSOM enables the quantification of differences in neoangiogenesis that predict treatment efficacy.

摘要

利用磁共振成像、计算机断层扫描或超声对血管靶向治疗进行监测受到其空间分辨率不足的限制。在这里,我们利用血红蛋白的固有光学特性表明,光栅扫描光声介观成像(RSOM)可以提供肿瘤血管和周围组织的高分辨率图像,并且检测广泛的超声带宽可以区分不同大小的血管,从而深入了解血管对血管靶向治疗的反应。使用 RSOM 检查小鼠皮下异种移植物中对血管靶向光动力治疗的反应,我们观察到肿瘤血管的大量即时闭塞,随后组织内出血,最终整个血管系统崩溃。使用双波长 RSOM 可以区分氧合血红蛋白和脱氧血红蛋白,我们观察到治疗后整个肿瘤体积的氧合作用立即增加,并且在大约 24 小时后出现第二次氧再灌注波。我们还表明,RSOM 能够定量检测预测治疗效果的新生血管形成差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/859d/7153756/785e95da01b6/nihms-1558084-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/859d/7153756/8c16ed3b0460/nihms-1558084-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/859d/7153756/fed456356b3c/nihms-1558084-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/859d/7153756/8b1531cc1884/nihms-1558084-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/859d/7153756/93f92a065357/nihms-1558084-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/859d/7153756/821152bc0213/nihms-1558084-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/859d/7153756/b462accd4ef7/nihms-1558084-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/859d/7153756/785e95da01b6/nihms-1558084-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/859d/7153756/8c16ed3b0460/nihms-1558084-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/859d/7153756/fed456356b3c/nihms-1558084-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/859d/7153756/8b1531cc1884/nihms-1558084-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/859d/7153756/93f92a065357/nihms-1558084-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/859d/7153756/821152bc0213/nihms-1558084-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/859d/7153756/b462accd4ef7/nihms-1558084-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/859d/7153756/785e95da01b6/nihms-1558084-f0007.jpg

相似文献

[1]
High-resolution optoacoustic imaging of tissue responses to vascular-targeted therapies.

Nat Biomed Eng. 2020-3-12

[2]
Pushing the optical imaging limits of cancer with multi-frequency-band raster-scan optoacoustic mesoscopy (RSOM).

Neoplasia. 2015-2

[3]
Raster-Scanning Optoacoustic Mesoscopy for Gastrointestinal Imaging at High Resolution.

Gastroenterology. 2018-3

[4]
Fast raster-scan optoacoustic mesoscopy enables assessment of human melanoma microvasculature in vivo.

Nat Commun. 2022-5-19

[5]
Optoacoustic imaging and potential applications of raster-scan optoacoustic mesoscopy in dermatology.

Clin Dermatol. 2022

[6]
Transrectal Absorber Guide Raster-Scanning Optoacoustic Mesoscopy for Label-Free In Vivo Assessment of Colitis.

Adv Sci (Weinh). 2023-6

[7]
Implications of ultrasound frequency in optoacoustic mesoscopy of the skin.

IEEE Trans Med Imaging. 2014-10-28

[8]
3D imaging of vascular anomalies using raster-scanning optoacoustic mesoscopy.

Lasers Surg Med. 2022-12

[9]
Motion correction in optoacoustic mesoscopy.

Sci Rep. 2017-9-4

[10]
High-resolution label-free mapping of murine kidney vasculature by raster-scanning optoacoustic mesoscopy: an ex vivo study.

Mol Cell Pediatr. 2022-7-4

引用本文的文献

[1]
Large-scale super-resolution optoacoustic imaging facilitated by FeNP/ICG-loaded coreless polyelectrolyte microcapsules.

Theranostics. 2025-5-25

[2]
Heterogeneous tumor blood oxygenation dynamics during phototherapy deciphered with real-time label-free photoacoustic imaging.

NPJ Acoust. 2025

[3]
Illuminating Hope for Tumors: The Progress of Light-Activated Nanomaterials in Skin Cancer.

Int J Nanomedicine. 2025-4-18

[4]
Vascular regional analysis unveils differential responses to anti-angiogenic therapy in pancreatic xenografts through macroscopic photoacoustic imaging.

Theranostics. 2025-1-27

[5]
Vascularized tumor on a microfluidic chip to study mechanisms promoting tumor neovascularization and vascular targeted therapies.

Theranostics. 2025-1-1

[6]
Correlation of Preclinical Imaging Modalities and Immunohistochemistry for Tumor Hypoxia and Vasculature.

In Vivo. 2025

[7]
Ultrasound-guided photoacoustic image annotation toolkit in MATLAB (PHANTOM) for preclinical applications.

Photoacoustics. 2024-11-9

[8]
In vivo, online label-free monitoring of heterogenous oxygen utilization during phototherapy with real-time ultrasound-guided photoacoustic imaging.

bioRxiv. 2024-12-3

[9]
In Vivo Assessment of Deep Vascular Patterns in Murine Colitis Using Optoacoustic Mesoscopic Imaging.

Adv Sci (Weinh). 2024-12

[10]
Current trends in the characterization and monitoring of vascular response to cancer therapy.

Cancer Imaging. 2024-10-23

本文引用的文献

[1]
Capsule optoacoustic endoscopy for esophageal imaging.

J Biophotonics. 2019-6-25

[2]
MR imaging biomarkers evaluating vascular normalization window after anti-vessel treatment.

Oncotarget. 2017-11-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索