Skubal Magdalena, Larney Benedict Mc, Phung Ngan Bao, Desmaras Juan Carlos, Dozic Abdul Vehab, Volpe Alessia, Ogirala Anuja, Machado Camila Longo, Djibankov Jakob, Ponomarev Vladimir, Grimm Jan
Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA.
Theranostics. 2025 Jan 1;15(3):766-783. doi: 10.7150/thno.95334. eCollection 2025.
The cascade of events leading to tumor formation includes induction of a tumor supporting neovasculature, as a primary hallmark of cancer. Developing vasculature is difficult to evaluate but can be captured using microfluidic chip technology and patient derived cells. Herein, we established an approach to investigate the mechanisms promoting tumor vascularization and vascular targeted therapies via co-culture of cancer spheroids and endothelial cells in a three dimensional environment. We investigated both, tumor neovascularization and therapy, via co-culture of human derived endothelial cells and adjacently localized metastatic renal cell carcinoma spheroids on a commercially available microfluidic chip system. Metastatic renal cell carcinoma spheroids adjacent to primary vessels model tumor, and induce vessels to sprout neovasculature towards the tumor. We monitored real time changes in vessel formation, probed the interactions of tumor and endothelial cells, and evaluated the role of important effectors in tumor vasculature. In addition to wild type endothelial cells, we evaluated endothelial cells that overexpress Prostate Specific Membrane Antigen (PSMA), that has emerged as a marker of tumor associated neovasculature. We characterized the process of neovascularization on the microfluidic chip stimulated by enhanced culture medium and the investigated metastatic renal cell carcinomas, and assessed endothelial cells responses to vascular targeted therapy with bevacizumab via confocal microscopy imaging. To emphasize the potential clinical relevance of metastatic renal cell carcinomas , we compared therapy with bevacizumab with an model of the same tumor. Our model permitted real-time, high-resolution observation and assessment of tumor-induced angiogenesis, where endothelial cells sprouted towards the tumor and mimicked a vascular network. Bevacizumab, an antiangiogenic agent, disrupted interactions between vessels and tumors, destroying the vascular network. The approach enabled assessment of endothelial cell biology, vessel's functionality, drug delivery, and molecular expression of PSMA. Observations in the vascularized tumor permitted direct and conclusive quantification of vascular targeted therapies in weeks as opposed to months in a comparable animal model, and bridged the gap between and models.
导致肿瘤形成的一系列事件包括诱导形成支持肿瘤的新生血管,这是癌症的一个主要特征。发育中的血管很难评估,但可以使用微流控芯片技术和患者来源的细胞来捕捉。在此,我们建立了一种方法,通过在三维环境中共同培养癌球和内皮细胞,来研究促进肿瘤血管生成的机制和血管靶向治疗。我们通过在市售的微流控芯片系统上共同培养人源内皮细胞和相邻定位的转移性肾细胞癌球,来研究肿瘤新生血管生成和治疗。与初级血管相邻的转移性肾细胞癌球模拟肿瘤,并诱导血管向肿瘤方向长出新生血管。我们监测血管形成的实时变化,探究肿瘤细胞与内皮细胞的相互作用,并评估重要效应分子在肿瘤血管系统中的作用。除了野生型内皮细胞,我们还评估了过表达前列腺特异性膜抗原(PSMA)的内皮细胞,PSMA已成为肿瘤相关新生血管的标志物。我们对由强化培养基和所研究的转移性肾细胞癌刺激的微流控芯片上的新生血管生成过程进行了表征,并通过共聚焦显微镜成像评估内皮细胞对贝伐单抗血管靶向治疗的反应。为了强调转移性肾细胞癌的潜在临床相关性,我们将贝伐单抗治疗与同一肿瘤的模型进行了比较。我们的模型允许实时、高分辨率观察和评估肿瘤诱导的血管生成,其中内皮细胞向肿瘤方向长出并模拟血管网络。抗血管生成药物贝伐单抗破坏了血管与肿瘤之间的相互作用,破坏了血管网络。该方法能够评估内皮细胞生物学、血管功能、药物递送以及PSMA的分子表达。在血管化肿瘤中的观察结果允许在数周内直接和确凿地量化血管靶向治疗,而在可比的动物模型中则需要数月,从而弥合了模型之间的差距。