Suppr超能文献

计算机断层扫描迭代重建中计算效率高的系统矩阵计算技术

Computationally Efficient System Matrix Calculation Techniques in Computed Tomography Iterative Reconstruction.

作者信息

Mahmoudi Golshan, Ay Mohammad Reza, Rahmim Arman, Ghadiri Hossein

机构信息

Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran.

Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran.

出版信息

J Med Signals Sens. 2020 Feb 6;10(1):1-11. doi: 10.4103/jmss.JMSS_29_19. eCollection 2020 Jan-Mar.

Abstract

BACKGROUND

Relative to classical methods in computed tomography, iterative reconstruction techniques enable significantly improved image qualities and/or lowered patient doses. However, the computational speed is a major concern for these iterative techniques. In the present study, we present a method for fast system matrix calculation based on the line integral model (LIM) to speed up the computations without compromising the image quality. In addition, we develop a hybrid line-area integral model (AIM) that highlights the advantages of both LIM and AIMs.

METHODS

The contributing detectors for a given pixel and a given projection view, and the length of corresponding intersection lines with pixels, are calculated using our proposed algorithm. For the hybrid method, the respective narrow-angle fan beam was modeled by multiple equally spaced lines. The computed system matrix was evaluated in the context of reconstruction using the simultaneous algebraic reconstruction technique (SART) as well as maximum likelihood expectation maximization (MLEM).

RESULTS

The proposed LIM offers a considerable reduction in calculation times compared to the standard Siddon algorithm: 2.9 times faster. Differences in root mean square error and peak signal-to-noise ratio were not significant between the proposed LIM and the Siddon algorithm for both SART and MLEM reconstruction methods ( > 0.05). Meanwhile, the proposed hybrid method resulted in significantly improved image qualities relative to LIM and the Siddon algorithm ( < 0.05), though computations were 4.9 times more intensive than the proposed LIM.

CONCLUSION

We have proposed two fast algorithms to calculate the system matrix. The first is based on LIM and was faster than the Siddon algorithm, with matched image quality, whereas the second method is a hybrid LIM-AIM that achieves significantly improved images though with its computational requirements.

摘要

背景

相对于计算机断层扫描中的传统方法,迭代重建技术能够显著提高图像质量和/或降低患者剂量。然而,计算速度是这些迭代技术的一个主要问题。在本研究中,我们提出了一种基于线积分模型(LIM)的快速系统矩阵计算方法,以在不影响图像质量的前提下加快计算速度。此外,我们还开发了一种混合线面积分模型(AIM),该模型突出了LIM和面积分模型(AIM)两者的优点。

方法

使用我们提出的算法计算给定像素和给定投影视图的贡献探测器,以及与像素的相应相交线的长度。对于混合方法,通过多条等间距线对各自的窄角扇形束进行建模。使用同时代数重建技术(SART)以及最大似然期望最大化(MLEM)在重建的背景下评估计算得到的系统矩阵。

结果

与标准的西顿算法相比,所提出的LIM在计算时间上有显著减少:快2.9倍。对于SART和MLEM重建方法,所提出的LIM与西顿算法之间的均方根误差和峰值信噪比差异均不显著(>0.05)。同时,相对于LIM和西顿算法,所提出的混合方法显著提高了图像质量(<0.05),尽管计算量比所提出的LIM多4.9倍。

结论

我们提出了两种快速算法来计算系统矩阵。第一种基于LIM,比西顿算法更快,图像质量相当;而第二种方法是混合LIM - AIM,虽然计算需求较大,但能显著改善图像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca76/7038747/e8afc9076933/JMSS-10-1-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验