IFMS-Federal Institute of Education, Science and Technology of Mato Grosso do Sul, Campus of Naviraí, Navirai, Brazil.
Department of Exact Sciences, State University of São Paulo-UNESP, Jaboticabal, Brazil.
Int J Biometeorol. 2020 Jul;64(7):1063-1084. doi: 10.1007/s00484-020-01881-5. Epub 2020 Mar 12.
We developed models for simulating trends over time as functions of the thermal index and models for estimating the levels of infestation of the coffee leaf miner and coffee berry borer and the severity of disease for coffee leaf rust and cercospora, the main phytosanitary problems in coffee crops around the world. We used historical series of climatic data and levels of pest infestation and disease severity in Coffea arabica for high and low yields for seven locations in the two main coffee-producing regions in the state of Minas Gerais in Brazil, Sul de Minas Gerais and Cerrado Mineiro. We conducted two analyses: (a) we simulated the trends of the progress of diseases and pests over time using non-linear models. We only used the thermal index because air temperature is commonly measured by farmers in the regions. (b) We estimated the levels of pest infestation and disease severity using multiple linear regression, with the levels of diseases and pests as dependent variables and accumulated degree days (DD), coffee foliage (LF) estimated by DD and the number of nodes (NN) estimated by DD as independent variables. We used DD and LF = f (DD) and NN = f (DD) to predict diseases and pests with accuracy. MAPEs were 19.6, 5.7, 9.5, and 15.8% for rust, cercospora, leaf miner, and berry borer, respectively, for Sul de Minas Gerais. Establishing phytosanitary alerts using only air temperature was possible with these models.
我们开发了模型来模拟随时间推移的趋势,这些模型是作为热指数的函数,还开发了模型来估计咖啡叶锈病、咖啡浆果象甲和咖啡叶斑潜蝇的发生程度以及咖啡叶斑病的严重程度,这些都是世界各地咖啡作物的主要植物病虫害问题。我们使用了历史气候数据系列以及巴西米纳斯吉拉斯州两个主要咖啡产区(南米纳斯吉拉斯州和米纳斯吉拉斯州塞拉多)七个地点的高、低产咖啡阿拉比卡咖啡的虫害和病害严重程度的历史数据。我们进行了两项分析:(a)我们使用非线性模型模拟了疾病和虫害随时间的发展趋势。我们只使用了热指数,因为该地区的农民通常会测量空气温度。(b)我们使用多元线性回归来估计虫害和病害的严重程度,将疾病和虫害的严重程度作为因变量,将累积度日(DD)、DD 估算的咖啡叶面积(LF)和 DD 估算的节点数(NN)作为自变量。我们使用 DD 和 LF=f(DD)和 NN=f(DD)来准确地预测疾病和虫害。对于南米纳斯吉拉斯州,锈病、叶斑病、叶斑潜蝇和浆果象甲的平均绝对百分比误差分别为 19.6%、5.7%、9.5%和 15.8%。仅使用空气温度就可以使用这些模型来建立植物病虫害警报。