Southern Federal University, Rostov-on-Don, Russian Federation.
Institute for Information Transmission Problems, Moscow, Russian Federation.
Plant Mol Biol. 2020 Jul;103(4-5):373-389. doi: 10.1007/s11103-020-00997-x. Epub 2020 Mar 12.
Even a point mutation in the psaA gene mediates chlorophyll deficiency. The role of the plastid signal may perform the redox state of the compounds on the acceptor-side of PSI. Two extranuclear variegated mutants of sunflower, Var1 and Var33, were investigated. The yellow sectors of both mutants were characterized by an extremely low chlorophyll and carotenoid content, as well as poorly developed, unstacked thylakoid membranes. A full-genome sequencing of the cpDNA revealed mutations in the psaA gene in both Var1 and Var33. The cpDNA from the yellow sectors of Var1 differs from those in the wild type by only a single, non-synonymous substitution (Gly734Glu) in the psaA gene, which encodes a subunit of photosystem (PS) I. In the cpDNA from the yellow sectors of Var33, the single-nucleotide insertion in the psaA gene was revealed, leading to frameshift at the 580 amino acid position. Analysis of the photosynthetic electron transport demonstrated an inhibition of the PSI and PSII activities in the yellow tissues of the mutant plants. It has been suggested that mutations in the psaA gene of both Var1 and Var33 led to the disruption of PSI. Due to the non-functional PSI, photosynthetic electron transport is blocked, which, in turn, leads to photodamage of PSII. These data are confirmed by immunoblotting analysis, which showed a significant reduction in PsbA in the yellow leaf sectors, but not PsaA. The expression of chloroplast and nuclear genes encoding the PSI subunits (psaA, psaB, and PSAN), the PSII subunits (psbA, psbB, and PSBW), the antenna proteins (LHCA1, LHCB1, and LHCB4), the ribulose 1.5-bisphosphate carboxylase subunits (rbcL and RbcS), and enzymes of chlorophyll biosynthesis were down-regulated in the yellow leaf tissue. The extremely reduced transcriptional activity of the two protochlorophyllide oxidoreductase (POR) genes involved in chlorophyll biosynthesis is noteworthy. The disruption of NADPH synthesis, due to the non-functional PSI, probably led to a significant reduction in NADPH-protochlorophyllide oxidoreductase in the yellow sectors of Var1 and Var33. A dramatic decrease in chlorophyllide was shown in the yellow sectors. A reduction in NADPH-protochlorophyllide oxidoreductase, along with photodegradation, has been suggested as a result of chlorophyll deficiency.
即使 psaA 基因中的一个点突变也介导叶绿素缺乏。质体信号的作用可能执行 PSI 受体侧化合物的氧化还原状态。对向日葵的两个核外斑驳突变体 Var1 和 Var33 进行了研究。两个突变体的黄色部分的特征是叶绿素和类胡萝卜素含量极低,以及发育不良、未堆叠的类囊体膜。对 cpDNA 的全基因组测序显示,在 Var1 和 Var33 中 psaA 基因发生了突变。与野生型相比,Var1 黄色部分的 cpDNA 仅在 psaA 基因中发生单个非同义取代(Gly734Glu),该基因编码 PSI 的一个亚基。在 Var33 黄色部分的 cpDNA 中,发现 psaA 基因中的单核苷酸插入,导致 580 位氨基酸位置移码。光合作用电子传递的分析表明,突变体植物黄色组织中 PSI 和 PSII 活性受到抑制。有人认为,Var1 和 Var33 中 psaA 基因的突变导致了 PSI 的破坏。由于 PSI 无功能,光合作用电子传递受阻,这反过来又导致 PSII 的光损伤。这些数据通过免疫印迹分析得到证实,该分析表明黄色叶组织中 PsbA 显著减少,但 PsaA 没有减少。叶绿体和核基因编码 PSI 亚基(psaA、psaB 和 PSAN)、PSII 亚基(psbA、psbB 和 PSBW)、天线蛋白(LHCA1、LHCB1 和 LHCB4)、核酮糖 1,5-二磷酸羧化酶亚基(rbcL 和 RbcS)和叶绿素生物合成酶的表达在黄色叶组织中下调。值得注意的是,两个参与叶绿素生物合成的原叶绿素氧化还原酶(POR)基因的转录活性极低。由于 PSI 无功能,NADPH 合成中断可能导致 Var1 和 Var33 黄色部分的 NADPH-原叶绿素氧化还原酶显著减少。黄色部分显示出叶绿素的急剧下降。有人提出,由于叶绿素缺乏,NADPH-原叶绿素氧化还原酶的减少以及光降解是造成这种情况的原因。