Department of Anatomy and Cell Biology, Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA.
Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA.
FASEB J. 2020 May;34(5):6369-6381. doi: 10.1096/fj.201902611R. Epub 2020 Mar 13.
Primary cilia are sensory organelles that are essential for eukaryotic development and health. These antenna-like structures are synthesized by intraflagellar transport protein complexes, IFT-B and IFT-A, which mediate bidirectional protein trafficking along the ciliary axoneme. Here using mouse embryonic fibroblasts (MEF), we investigate the ciliary roles of two mammalian orthologues of Chlamydomonas IFT-A gene, IFT139, namely Thm1 (also known as Ttc21b) and Thm2 (Ttc21a). Thm1 loss causes perinatal lethality, and Thm2 loss allows survival into adulthood. At E14.5, the number of Thm1;Thm2 double mutant embryos is lower than that for a Mendelian ratio, indicating deletion of Thm1 and Thm2 causes mid-gestational lethality. We examined the ciliary phenotypes of mutant MEF. Thm1-mutant MEF show decreased cilia assembly, increased cilia disassembly, shortened primary cilia, a retrograde IFT defect for IFT and BBS proteins, and reduced ciliary entry of membrane-associated proteins. Thm1-mutant cilia also show a retrograde transport defect for the Hedgehog transducer, Smoothened, and an impaired response to Smoothened agonist, SAG. Thm2-null MEF show normal ciliary dynamics and Hedgehog signaling, but additional loss of a Thm1 allele impairs response to SAG. Further, Thm1;Thm2 double-mutant MEF show enhanced cilia disassembly, and increased impairment of INPP5E ciliary import. Thus, Thm1 and Thm2 have unique and redundant roles in MEF. Thm1 regulates cilia assembly, and alone and together with Thm2, regulates cilia disassembly, ciliary entry of membrane-associated protein, Hedgehog signaling, and embryogenesis. These findings shed light on mechanisms underlying Thm1-, Thm2- or IFT-A-mediated ciliopathies.
纤毛是真核生物发育和健康所必需的感觉细胞器。这些类似天线的结构是由内鞭毛运输蛋白复合物 IFT-B 和 IFT-A 合成的,IFT-B 和 IFT-A 介导沿着纤毛轴丝的双向蛋白运输。在这里,我们使用小鼠胚胎成纤维细胞(MEF)研究了绿眼虫IFT-A 基因的两个哺乳动物同源物,IFT139,即 Thm1(也称为 Ttc21b)和 Thm2(Ttc21a)的纤毛作用。Thm1 缺失导致围产期致死,而 Thm2 缺失允许存活到成年期。在 E14.5,Thm1;Thm2 双突变体胚胎的数量低于孟德尔比例,表明 Thm1 和 Thm2 的缺失导致中期妊娠致死。我们检查了突变 MEF 的纤毛表型。Thm1 突变型 MEF 显示出纤毛组装减少、纤毛解体增加、初级纤毛缩短、IFT 和 BBS 蛋白的逆行 IFT 缺陷以及膜相关蛋白的纤毛进入减少。Thm1 突变型纤毛还显示出 Hedgehog 转导蛋白 Smoothened 的逆行运输缺陷和对 Smoothened 激动剂 SAG 的反应受损。Thm2 缺失型 MEF 显示出正常的纤毛动力学和 Hedgehog 信号,但额外缺失一个 Thm1 等位基因会损害对 SAG 的反应。此外,Thm1;Thm2 双突变型 MEF 显示出增强的纤毛解体,以及 INPP5E 纤毛内输入的进一步损伤。因此,Thm1 和 Thm2 在 MEF 中具有独特和冗余的作用。Thm1 调节纤毛组装,并且单独和与 Thm2 一起,调节纤毛解体、膜相关蛋白的纤毛进入、Hedgehog 信号传导和胚胎发生。这些发现揭示了 Thm1-、Thm2-或 IFT-A 介导的纤毛病的潜在机制。