Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB), Universidad Favaloro-CONICET, Buenos Aires, Argentina.
Laboratorio de Ingeniería Genética y Biología Celular y Molecular; CONICET, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina.
Am J Physiol Heart Circ Physiol. 2020 Apr 1;318(4):H994-H1007. doi: 10.1152/ajpheart.00610.2019. Epub 2020 Mar 13.
The adult mammalian cardiomyocyte has a very limited capacity to reenter the cell cycle and advance into mitosis. Therefore, diseases characterized by lost contractile tissue usually evolve into myocardial remodeling and heart failure. Analyzing the cardiac transcriptome at different developmental stages in a large mammal closer to the human than laboratory rodents may serve to disclose positive and negative cardiomyocyte cell cycle regulators potentially targetable to induce cardiac regeneration in the clinical setting. Thus we aimed at characterizing the transcriptomic profiles of the early fetal, late fetal, and adult sheep heart by employing RNA-seq technique and bioinformatic analysis to detect protein-encoding genes that in some of the stages were turned off, turned on, or differentially expressed. Genes earlier proposed as positive cell cycle regulators such as cyclin A, cdk2, meis2, meis3, and PCNA showed higher expression in fetal hearts and lower in AH, as expected. In contrast, genes previously proposed as cell cycle inhibitors, such as , , and , tended to be higher in fetal than in adult hearts, suggesting that these genes are involved in cell processes other than cell cycle regulation. Additionally, we described Gene Ontology (GO) enrichment of different sets of genes. GO analysis revealed that differentially expressed gene sets were mainly associated with metabolic and cellular processes. The cell cycle-related genes , , and , and the metabolism-related genes and showed strong differential expression between fetal and adult hearts, thus being potent candidates to be targeted in human cardiac regeneration strategies. We characterized the transcriptomic profiles of the fetal and adult sheep hearts employing RNAseq technique and bioinformatic analyses to provide sets of transcripts whose variation in expression level may link them to a specific role in cell cycle regulation. It is important to remark that this study was performed in a large mammal closer to humans than laboratory rodents. In consequence, the results can be used for further translational studies in cardiac regeneration.
成年哺乳动物心肌细胞重新进入细胞周期并进入有丝分裂的能力非常有限。因此,以收缩组织丧失为特征的疾病通常会发展为心肌重构和心力衰竭。在比实验室啮齿动物更接近人类的大型哺乳动物中分析不同发育阶段的心脏转录组,可能有助于揭示潜在的正性和负性心肌细胞周期调节剂,以便在临床环境中诱导心脏再生。因此,我们旨在通过 RNA-seq 技术和生物信息学分析来描述早期胎儿、晚期胎儿和成年绵羊心脏的转录组特征,以检测在某些阶段关闭、打开或差异表达的蛋白质编码基因。早期被提出作为正性细胞周期调节剂的基因,如细胞周期蛋白 A、cdk2、meis2、meis3 和 PCNA,在胎儿心脏中的表达较高,而在 AH 中的表达较低,这是意料之中的。相比之下,先前被提出作为细胞周期抑制剂的基因,如、和,在胎儿心脏中的表达高于成年心脏,这表明这些基因参与了除细胞周期调控之外的细胞过程。此外,我们还描述了不同基因集的基因本体论(GO)富集。GO 分析表明,差异表达基因集主要与代谢和细胞过程相关。细胞周期相关基因、和,以及代谢相关基因和在胎儿和成年心脏之间表现出强烈的差异表达,因此是人类心脏再生策略中靶向的潜在候选基因。我们采用 RNA-seq 技术和生物信息学分析来描述胎儿和成年绵羊心脏的转录组特征,提供了一组表达水平变化的转录本,这些变化可能与它们在细胞周期调控中的特定作用有关。值得注意的是,这项研究是在比实验室啮齿动物更接近人类的大型哺乳动物中进行的。因此,研究结果可用于心脏再生的进一步转化研究。