Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil.
Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, CEP 90035-903, Porto Alegre, RS, Brazil.
Biochimie. 2020 Apr-May;171-172:187-196. doi: 10.1016/j.biochi.2020.03.007. Epub 2020 Mar 10.
High urinary excretion and tissue accumulation of 3-methylglutaric acid (MGA) are observed in patients affected by 3-hydroxy-3-methylglutaric (HMGA) and 3-methylglutaconic (MGTA) acidurias. The pathomechanisms underlying the hepatic dysfunction commonly observed in these disorders are not fully elucidated so that we investigated here the effects of intraperitoneal administration of MGA on redox homeostasis, mitochondrial bioenergetics, biogenesis and dynamics in rat liver. The effects of a pre-treatment with the protective compound bezafibrate (BEZ) were also determined. Our data showed that MGA induced lipid peroxidation and altered enzymatic and non-enzymatic antioxidant defenses in liver, indicating redox homeostasis disruption. BEZ prevented most of these alterations induced by MGA. MGA also decreased the activities of the respiratory chain complexes II and IV and increased of II-III, whereas BEZ prevented the alteration in complex II activity. Furthermore, MGA decreased levels of nuclear PGC-1α and Sirt1, and increased levels of AMPKα1 and cytosolic PPARγ, which were blocked by BEZ. MGA augmented the levels of mitofusin-1 and dynamin-related protein 1, suggesting that both fusion and fission mitochondrial processes are enhanced by MGA. BEZ was able to prevent only the changes in mitofusin-1 levels. Collectively, these findings indicate that oxidative stress and mitochondrial dysfunction are mechanisms involved in the hepatic dysfunction found in HMGA and MGTA. It is also presumed that mitochondrial biogenesis stimulation may constitute an attractive approach to reduce MGA toxicity in liver of individuals affected by HMGA and MGTA.
高尿酸血症和 3-羟基-3-甲基戊二酸(HMGA)和 3-甲基戊二酸(MGTA)酸尿症患者的尿酸排泄和组织积累。这些疾病中常见的肝功能障碍的发病机制尚未完全阐明,因此我们在此研究了 MGA 对大鼠肝脏氧化还原平衡、线粒体生物能学、生物发生和动力学的影响。还确定了保护性化合物 bezafibrate(BEZ)预处理的影响。我们的数据表明,MGA 诱导了肝内脂质过氧化和酶和非酶抗氧化防御的改变,表明氧化还原平衡受到破坏。BEZ 阻止了 MGA 引起的大多数这些改变。MGA 还降低了呼吸链复合物 II 和 IV 的活性,并增加了 II-III,而 BEZ 阻止了复合物 II 活性的改变。此外,MGA 降低了核 PGC-1α 和 Sirt1 的水平,并增加了 AMPKα1 和胞质 PPARγ 的水平,这些都被 BEZ 阻断。MGA 增加了线粒体融合蛋白 1 和 dynamin 相关蛋白 1 的水平,表明融合和裂变线粒体过程都被 MGA 增强。BEZ 只能阻止线粒体融合蛋白 1 水平的变化。总之,这些发现表明氧化应激和线粒体功能障碍是 HMGA 和 MGTA 中发现的肝功能障碍的机制。据推测,线粒体生物发生的刺激可能是减少 HMGA 和 MGTA 患者肝脏中 MGA 毒性的一种有吸引力的方法。