Suppr超能文献

迈向肌萎缩侧索硬化症多中心治疗试验:使用不同转位蛋白 PET 放射性配体进行数据池化的可行性。

Moving Toward Multicenter Therapeutic Trials in Amyotrophic Lateral Sclerosis: Feasibility of Data Pooling Using Different Translocator Protein PET Radioligands.

机构信息

Nuclear Medicine Subdivision, Department of Imaging and Pathology, University Hospital Leuven, Leuven, Belgium

Department of Neurology, Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.

出版信息

J Nucl Med. 2020 Nov;61(11):1621-1627. doi: 10.2967/jnumed.119.241059. Epub 2020 Mar 13.

Abstract

Neuroinflammation has been implicated in amyotrophic lateral sclerosis (ALS) and can be visualized using translocator protein (TSPO) radioligands. To become a reliable pharmacodynamic biomarker for ALS multicenter trials, TSPO radioligands have some challenges to overcome. We aimed to investigate whether multicenter data pooling of different TSPO tracers (C-PBR28 and F-DPA714) is feasible, after validation of an established C-PBR28 PET pseudo reference analysis technique for F-DPA714. Seven ALS patients from Belgium (58.9 ± 6.7 y old, 5 men and 2 women), 8 healthy volunteers from Belgium (52.1 ± 15.2 y old, 3 men and 5 women), 7 ALS patients from the United States (53.4 ± 9.8 y old, 5 men and 2 women), and 7 healthy volunteers from the United States (54.6 ± 9.6 y old, 4 men and 3 women) from a previously published study underwent dynamic F-DPA714 (Leuven, Belgium) or C-PBR28 (Boston, Massachusetts) PET/MRI. For F-DPA714, maps of total volume of distribution (V) were compared with SUV ratio (SUVR) images from 40 to 60 min after injection (SUVR) calculated using the pseudo reference regions cerebellum, occipital cortex, and whole brain (WB) without ventricles. For C-PBR28, SUVR images from 60 to 90 min after injection using the WB without ventricles were calculated. In line with previous studies, increased F-DPA714 uptake (17.0% ± 5.6%) in primary motor cortices was observed in ALS subjects, as measured by both V and SUVR approaches. The highest sensitivity was found for SUVR calculated using the WB without ventricles (average cluster, 21.6% ± 0.1%). F-DPA714 V ratio was highly correlated with the SUVR ( > 0.8, < 0.001). A similar pattern of increased uptake (average cluster, 20.5% ± 0.5%) in the primary motor cortices was observed in ALS subjects for C-PBR28 SUVR calculated using the WB without ventricles. Analysis of the F-DPA714 and C-PBR28 data together resulted in a more extensive pattern of significantly increased glial activation bilaterally in the primary motor cortices. The same pseudo reference region analysis technique for C-PBR28 PET can be extended toward F-DPA714 PET. Therefore, in ALS, standardized analysis across these 2 tracers enables pooling of TSPO PET data across multiple centers and increases the power of TSPO as a biomarker for future therapeutic trials.

摘要

神经炎症与肌萎缩侧索硬化症(ALS)有关,可以使用转位蛋白(TSPO)放射性配体进行可视化。为了成为 ALS 多中心试验的可靠药效学生物标志物,TSPO 放射性配体仍面临一些需要克服的挑战。我们旨在通过验证用于 F-DPA714 的已建立的 C-PBR28 PET 伪参考分析技术,来研究不同 TSPO 示踪剂(C-PBR28 和 F-DPA714)的多中心数据汇总是否可行。 先前研究中,来自比利时的 7 名 ALS 患者(58.9 ± 6.7 岁,5 名男性和 2 名女性)、来自比利时的 8 名健康志愿者(52.1 ± 15.2 岁,3 名男性和 5 名女性)、来自美国的 7 名 ALS 患者(53.4 ± 9.8 岁,5 名男性和 2 名女性)和来自美国的 7 名健康志愿者(54.6 ± 9.6 岁,4 名男性和 3 名女性)接受了动态 F-DPA714(比利时鲁汶)或 C-PBR28(马萨诸塞州波士顿)PET/MRI。对于 F-DPA714,将总分布容积(V)图与注射后 40 至 60 分钟(SUV)计算的 SUV 比(SUVR)图像进行比较,使用伪参考区域小脑、枕叶皮质和整个大脑(WB)而无脑室。对于 C-PBR28,使用无脑室的 WB 计算注射后 60 至 90 分钟的 SUVR 图像。 与之前的研究一致,在 ALS 患者中观察到原发性运动皮质中 F-DPA714 摄取增加(17.0% ± 5.6%),通过 V 和 SUVR 方法均可测量。使用无脑室 WB 计算的 SUVR 方法的灵敏度最高(平均簇,21.6% ± 0.1%)。F-DPA714 V 比与 SUVR 高度相关(>0.8,<0.001)。在 ALS 患者中,C-PBR28 SUVR 使用无脑室 WB 计算时,原发性运动皮质中摄取增加(平均簇,20.5% ± 0.5%)的类似模式。F-DPA714 和 C-PBR28 数据的联合分析导致双侧原发性运动皮质中胶质激活的广泛增加。 对于 C-PBR28 PET,可以扩展相同的伪参考区域分析技术,以扩展到 F-DPA714 PET。因此,在 ALS 中,这两种示踪剂的标准化分析能够跨多个中心汇总 TSPO PET 数据,并提高 TSPO 作为未来治疗试验生物标志物的功效。

相似文献

2
Integrated imaging of [C]-PBR28 PET, MR diffusion and magnetic resonance spectroscopy H-MRS in amyotrophic lateral sclerosis.
Neuroimage Clin. 2018 Aug 9;20:357-364. doi: 10.1016/j.nicl.2018.08.007. eCollection 2018.
3
TSPO Versus P2X7 as a Target for Neuroinflammation: An In Vitro and In Vivo Study.
J Nucl Med. 2020 Apr;61(4):604-607. doi: 10.2967/jnumed.119.231985. Epub 2019 Sep 27.
4
Increased in vivo glial activation in patients with amyotrophic lateral sclerosis: assessed with [(11)C]-PBR28.
Neuroimage Clin. 2015 Jan 19;7:409-14. doi: 10.1016/j.nicl.2015.01.009. eCollection 2015.
5
Brain glial activation in fibromyalgia - A multi-site positron emission tomography investigation.
Brain Behav Immun. 2019 Jan;75:72-83. doi: 10.1016/j.bbi.2018.09.018. Epub 2018 Sep 14.
6
Increased microglial activation in patients with Parkinson disease using [F]-DPA714 TSPO PET imaging.
Parkinsonism Relat Disord. 2021 Jan;82:29-36. doi: 10.1016/j.parkreldis.2020.11.011. Epub 2020 Nov 17.
9
Generalization of endothelial modelling of TSPO PET imaging: Considerations on tracer affinities.
J Cereb Blood Flow Metab. 2019 May;39(5):874-885. doi: 10.1177/0271678X17742004. Epub 2017 Nov 14.

引用本文的文献

3
A support vector machine-based approach to guide the selection of a pseudo-reference region for brain PET quantification.
J Cereb Blood Flow Metab. 2025 Mar;45(3):568-577. doi: 10.1177/0271678X241290912. Epub 2024 Oct 13.
5
Potential of neuroimaging as a biomarker in amyotrophic lateral sclerosis: from structure to metabolism.
J Neurol. 2024 May;271(5):2238-2257. doi: 10.1007/s00415-024-12201-x. Epub 2024 Feb 17.
6
PET and SPECT Imaging of ALS: An Educational Review.
Mol Imaging. 2023 Aug 19;2023:5864391. doi: 10.1155/2023/5864391. eCollection 2023.
8
Characterization of neuroinflammation pattern in anti-LGI1 encephalitis based on TSPO PET and symptom clustering analysis.
Eur J Nucl Med Mol Imaging. 2023 Jul;50(8):2394-2408. doi: 10.1007/s00259-023-06190-8. Epub 2023 Mar 17.
10
Positron Emission Tomography of Neuroimmune Responses in Humans: Insights and Intricacies.
Semin Nucl Med. 2023 Mar;53(2):213-229. doi: 10.1053/j.semnuclmed.2022.08.008. Epub 2022 Oct 19.

本文引用的文献

1
TSPO Versus P2X7 as a Target for Neuroinflammation: An In Vitro and In Vivo Study.
J Nucl Med. 2020 Apr;61(4):604-607. doi: 10.2967/jnumed.119.231985. Epub 2019 Sep 27.
2
Estimation of Crystal Timing Properties and Efficiencies for the Improvement of (Joint) Maximum-Likelihood Reconstructions in TOF-PET.
IEEE Trans Med Imaging. 2020 Apr;39(4):952-963. doi: 10.1109/TMI.2019.2938028. Epub 2019 Aug 28.
4
Comparison of Pittsburgh compound B and florbetapir in cross-sectional and longitudinal studies.
Alzheimers Dement (Amst). 2019 Feb 22;11:180-190. doi: 10.1016/j.dadm.2018.12.008. eCollection 2019 Dec.
5
Immune dysregulation in amyotrophic lateral sclerosis: mechanisms and emerging therapies.
Lancet Neurol. 2019 Feb;18(2):211-220. doi: 10.1016/S1474-4422(18)30394-6.
6
Integrated imaging of [C]-PBR28 PET, MR diffusion and magnetic resonance spectroscopy H-MRS in amyotrophic lateral sclerosis.
Neuroimage Clin. 2018 Aug 9;20:357-364. doi: 10.1016/j.nicl.2018.08.007. eCollection 2018.
8
Recent Progress in the Development of TSPO PET Ligands for Neuroinflammation Imaging in Neurological Diseases.
Nucl Med Mol Imaging. 2017 Dec;51(4):283-296. doi: 10.1007/s13139-017-0475-8. Epub 2017 Mar 16.
9
Amyotrophic lateral sclerosis.
Nat Rev Dis Primers. 2017 Oct 20;3:17085. doi: 10.1038/nrdp.2017.85.
10
Role of Neuroinflammation in Amyotrophic Lateral Sclerosis: Cellular Mechanisms and Therapeutic Implications.
Front Immunol. 2017 Aug 21;8:1005. doi: 10.3389/fimmu.2017.01005. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验