Suppr超能文献

化学合成氧化锌纳米粒子(ZnO NPs)诱导芸薹属物种中的氮氧信号转导。

Nitro-oxidative signalling induced by chemically synthetized zinc oxide nanoparticles (ZnO NPs) in Brassica species.

机构信息

Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary.

Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, University of Szeged, H-6720, Szeged, Rerrich Bela ter 1., Hungary.

出版信息

Chemosphere. 2020 Jul;251:126419. doi: 10.1016/j.chemosphere.2020.126419. Epub 2020 Mar 6.

Abstract

Due to their release into the environment, zinc oxide nanoparticles (ZnO NPs) may come in contact with plants. In elevated concentrations, ZnO NPs induce reactive oxygen species (ROS) production, but the metabolism of reactive nitrogen species (RNS) and the consequent nitro-oxidative signalling has not been examined so far. In this work, Brassica napus and Brassica juncea seedlings were treated with chemically synthetized ZnO NPs (∼8 nm, 0, 25 or 100 mg/L). At low dose (25 mg/L) ZnO NP exerted a positive effect, while at elevated concentration (100 mg/L) it was toxic to both species. Additionally, B. juncea was more tolerant to ZnO NPs than B. napus. The ZnO NPs could enter the root cells due to their small (∼8 nm) size which resulted in the release of Zn and subsequently increased Zn content in the plant organs. ZnO NPs disturbed superoxide radical and hydrogen peroxide homeostasis and modulated ROS metabolic enzymes (NADPH oxidase, superoxide dismutase, ascorbate peroxidase) and non-enzymatic antioxidants (ascorbate and glutathione) inducing similar changes in oxidative signalling in both Brassica species. The homeostasis of RNS (nitric oxide, peroxynitrite and S-nitrosoglutathione) was also altered by ZnO NPs; however, changes in nitrosative signalling proved to be different in the examined species. Moreover, ZnO NPs triggered changes in protein carbonylation and nitration. These results suggest that ZnO NPs induce changes in nitro-oxidative signalling which may contribute to ZnO NP toxicity. Furthermore, difference in ZnO NP tolerance of Brassica species is more likely related to nitrosative than to oxidative signalling.

摘要

由于氧化锌纳米粒子(ZnO NPs)被释放到环境中,它们可能会与植物接触。在高浓度下,ZnO NPs 会诱导活性氧(ROS)的产生,但目前尚未研究活性氮(RNS)的代谢以及随之而来的硝氧化信号。在这项工作中,用化学合成的 ZnO NPs(∼8nm,0、25 或 100mg/L)处理了油菜和芥菜幼苗。在低剂量(25mg/L)时,ZnO NP 表现出积极的影响,而在高浓度(100mg/L)时,它对两种植物都有毒。此外,芥菜比油菜对 ZnO NPs 的耐受性更强。由于 ZnO NPs 的尺寸较小(∼8nm),它们可以进入根细胞,导致 Zn 的释放,并随后增加植物器官中的 Zn 含量。ZnO NPs 扰乱了超氧自由基和过氧化氢的动态平衡,并调节了 ROS 代谢酶(NADPH 氧化酶、超氧化物歧化酶、抗坏血酸过氧化物酶)和非酶抗氧化剂(抗坏血酸和谷胱甘肽),在两种芸薹属植物中诱导了类似的氧化信号变化。RNS(一氧化氮、过氧亚硝酸盐和 S-亚硝基谷胱甘肽)的动态平衡也被 ZnO NPs 改变;然而,硝氧化信号的变化在被检查的物种中是不同的。此外,ZnO NPs 引发了蛋白质羰基化和硝化的变化。这些结果表明,ZnO NPs 诱导了硝氧化信号的变化,这可能是 ZnO NP 毒性的原因。此外,芸薹属物种对 ZnO NPs 耐受性的差异更可能与硝氧化信号有关,而不是与氧化信号有关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验