Section of Endocrinology, Diabetes, & Metabolism, Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
Section of Endocrinology, Diabetes, & Metabolism, Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Department of Molecular and Clinical Medicine, Sahlgrenska Academy of the University of Gothenburg, Göteborg, 413 45, Sweden.
Atherosclerosis. 2020 Apr;298:42-51. doi: 10.1016/j.atherosclerosis.2020.02.006. Epub 2020 Feb 13.
Patients with overnutrition, obesity, the atherometabolic syndrome, and type 2 diabetes typically develop fatty liver, atherogenic dyslipoproteinemia, hyperglycemia, and hypertension. These features share an unexplained origin - namely, imbalanced insulin action, also called pathway-selective insulin resistance and responsiveness. To control glycemia, these patients require hyperinsulinemia that then overdrives ERK and hepatic de-novo lipogenesis. We previously reported that NADPH oxidase-4 regulates balanced insulin action, but the model appeared incomplete.
We conducted structure-function studies in liver cells to search for additional molecular mediators of balanced insulin action.
We found that NADPH oxidase-4 is part of a new limb of insulin signaling that we abbreviate "NSAPP" after its five major proteins. The NSAPP pathway is an oxide transport chain that begins when insulin stimulates NADPH oxidase-4 to generate superoxide (O•). NADPH oxidase-4 forms a novel, tight complex with superoxide dismutase-3, to efficiently transfer O• for quantitative conversion into hydrogen peroxide. The pathway ends when aquaporin-3 channels HO across the plasma membrane to inactivate PTEN. Accordingly, aquaporin-3 forms a novel complex with PTEN in McArdle hepatocytes and in unpassaged human primary hepatic parenchymal cells. Molecular or chemical disruption of any component of the NSAPP chain, from NADPH oxidase-4 up to PTEN, leaves PTEN persistently active, thereby recapitulating the same deadly pattern of imbalanced insulin action seen clinically.
The NSAPP pathway functions as a master regulator of balanced insulin action via ERK, PI3K-AKT, and downstream targets of AKT. Unraveling its dysfunction in overnutrition might clarify the molecular cause of the atherometabolic syndrome and type 2 diabetes.
患有营养过剩、肥胖、动脉粥样代谢综合征和 2 型糖尿病的患者通常会发展为脂肪肝、动脉粥样硬化性血脂异常、高血糖和高血压。这些特征具有一个尚未阐明的共同起源,即胰岛素作用失衡,也被称为途径选择性胰岛素抵抗和反应性。为了控制血糖,这些患者需要高胰岛素血症,从而过度驱动 ERK 和肝从头脂肪生成。我们之前报道过 NADPH 氧化酶-4 调节平衡的胰岛素作用,但该模型似乎并不完整。
我们在肝细胞中进行了结构功能研究,以寻找平衡胰岛素作用的其他分子介质。
我们发现 NADPH 氧化酶-4 是胰岛素信号的一个新分支的一部分,我们将其缩写为“NSAPP”,以纪念其五个主要蛋白质。NSAPP 途径是一种氧化物传输链,当胰岛素刺激 NADPH 氧化酶-4 生成超氧阴离子(O•)时开始。NADPH 氧化酶-4 与超氧化物歧化酶-3 形成一个新的紧密复合物,以有效地将 O•转移并定量转化为过氧化氢。当水通道蛋白-3 将 HO 穿过质膜穿过质膜时,该途径结束,以灭活 PTEN。因此,水通道蛋白-3 在 McArdle 肝细胞中和未传代的人原代肝实质细胞中与 PTEN 形成一个新的复合物。从 NADPH 氧化酶-4 到 PTEN 的 NSAPP 链的任何成分的分子或化学破坏都会使 PTEN 持续激活,从而再现临床上所见的同样失衡的胰岛素作用的致命模式。
NSAPP 途径通过 ERK、PI3K-AKT 和 AKT 的下游靶标作为平衡胰岛素作用的主调节因子发挥作用。阐明其在营养过剩中的功能障碍可能阐明动脉粥样代谢综合征和 2 型糖尿病的分子病因。