Suppr超能文献

发作频率的自然变异性:对试验和安慰剂的影响。

Natural variability in seizure frequency: Implications for trials and placebo.

机构信息

Harvard Medical School Beth Israel Deaconess Medical Center, Department of Neurology, United States.

Harvard Medical School Beth Israel Deaconess Medical Center, Department of Neurology, United States.

出版信息

Epilepsy Res. 2020 May;162:106306. doi: 10.1016/j.eplepsyres.2020.106306. Epub 2020 Mar 6.

Abstract

BACKGROUND

Changes in patient-reported seizure frequencies are the gold standard used to test efficacy of new treatments in randomized controlled trials (RCTs). Recent analyses of patient seizure diary data suggest that the placebo response may be attributable to natural fluctuations in seizure frequency, though the evidence is incomplete. Here we develop a data-driven statistical model and assess the impact of the model on interpretation of placebo response.

METHODS

A synthetic seizure diary generator matching statistical properties seen across multiple epilepsy diary datasets was constructed. The model was used to simulate the placebo arm of 5000 RCTs. A meta-analysis of 23 historical RCTs was compared to the simulations.

RESULTS

The placebo 50 %-responder rate (RR50) was 27.3 ± 3.6 % (simulated) and 21.1 ± 10.0 % (historical). The placebo median percent change (MPC) was 22.0 ± 6.0 % (simulated) and 16.7 ± 10.3 % (historical).

CONCLUSIONS

A statistical model of daily seizure count generation which incorporates quantities related to the natural fluctuations of seizure count data produces a placebo response comparable to those seen in historical RCTs. This model may be useful in better understanding the seizure count fluctuations seen in patients in other clinical settings.

摘要

背景

患者报告的发作频率变化是测试随机对照试验(RCT)中新治疗方法疗效的金标准。最近对患者发作日记数据的分析表明,安慰剂反应可能归因于发作频率的自然波动,尽管证据并不完整。在这里,我们开发了一个数据驱动的统计模型,并评估了该模型对安慰剂反应解释的影响。

方法

构建了一个与多个癫痫日记数据集一致的统计特性的合成发作日记生成器。该模型用于模拟 5000 项 RCT 的安慰剂组。将 23 项历史 RCT 的荟萃分析与模拟进行了比较。

结果

安慰剂 50%缓解率(RR50)为 27.3±3.6%(模拟)和 21.1±10.0%(历史)。安慰剂中位数百分比变化(MPC)为 22.0±6.0%(模拟)和 16.7±10.3%(历史)。

结论

一种生成每日发作次数的统计模型,该模型包含与发作次数数据的自然波动相关的数量,可产生与历史 RCT 中观察到的安慰剂反应相当的反应。该模型可用于更好地理解其他临床环境中患者的发作次数波动。

相似文献

1
Natural variability in seizure frequency: Implications for trials and placebo.
Epilepsy Res. 2020 May;162:106306. doi: 10.1016/j.eplepsyres.2020.106306. Epub 2020 Mar 6.
2
Does accounting for seizure frequency variability increase clinical trial power?
Epilepsy Res. 2017 Nov;137:145-151. doi: 10.1016/j.eplepsyres.2017.07.013. Epub 2017 Jul 25.
3
Flexible realistic simulation of seizure occurrence recapitulating statistical properties of seizure diaries.
Epilepsia. 2023 Feb;64(2):396-405. doi: 10.1111/epi.17471. Epub 2022 Dec 4.
4
Treatments for seizures in catamenial (menstrual-related) epilepsy.
Cochrane Database Syst Rev. 2021 Sep 16;9(9):CD013225. doi: 10.1002/14651858.CD013225.pub3.
5
Examining the clinical utility of lacosamide: pooled analyses of three phase II/III clinical trials.
CNS Drugs. 2010 Dec;24(12):1041-54. doi: 10.2165/11586830-000000000-00000.
7
Lamotrigine adjunctive therapy among children and adolescents with primary generalized tonic-clonic seizures.
Pediatrics. 2006 Aug;118(2):e371-8. doi: 10.1542/peds.2006-0148. Epub 2006 Jul 17.
9
Pharmacological treatments for preventing epilepsy following traumatic head injury.
Cochrane Database Syst Rev. 2015 Aug 10;2015(8):CD009900. doi: 10.1002/14651858.CD009900.pub2.
10
Treatments for seizures in catamenial (menstrual-related) epilepsy.
Cochrane Database Syst Rev. 2019 Oct 14;10(10):CD013225. doi: 10.1002/14651858.CD013225.pub2.

引用本文的文献

1
Inductive reasoning with large language models: A simulated randomized controlled trial for epilepsy.
Epilepsy Res. 2025 Mar;211:107532. doi: 10.1016/j.eplepsyres.2025.107532. Epub 2025 Feb 24.
4
Demonstration of Group-Level and Individual-Level Efficacy Using Time-to-Event Designs for Clinical Trials of Antiseizure Medications.
Neurology. 2024 Aug 27;103(4):e209713. doi: 10.1212/WNL.0000000000209713. Epub 2024 Jul 25.
5
Minimum clinical utility standards for wearable seizure detectors: A simulation study.
Epilepsia. 2024 Apr;65(4):1017-1028. doi: 10.1111/epi.17917. Epub 2024 Feb 17.
6
Increasing challenges to trial recruitment and conduct over time.
Epilepsia. 2023 Oct;64(10):2625-2634. doi: 10.1111/epi.17716. Epub 2023 Jul 25.
7
Machine Learning in Clinical Trials: A Primer with Applications to Neurology.
Neurotherapeutics. 2023 Jul;20(4):1066-1080. doi: 10.1007/s13311-023-01384-2. Epub 2023 May 30.
8
Time-to-event clinical trial designs: Existing evidence and remaining concerns.
Epilepsia. 2023 Jul;64(7):1699-1708. doi: 10.1111/epi.17621. Epub 2023 May 2.
9
Flexible realistic simulation of seizure occurrence recapitulating statistical properties of seizure diaries.
Epilepsia. 2023 Feb;64(2):396-405. doi: 10.1111/epi.17471. Epub 2022 Dec 4.

本文引用的文献

1
Circadian and circaseptan rhythms in human epilepsy: a retrospective cohort study.
Lancet Neurol. 2018 Nov;17(11):977-985. doi: 10.1016/S1474-4422(18)30274-6. Epub 2018 Sep 12.
2
Characteristics of large patient-reported outcomes: Where can one million seizures get us?
Epilepsia Open. 2018 Jul 4;3(3):364-373. doi: 10.1002/epi4.12237. eCollection 2018 Sep.
3
Seizure cluster: Definition, prevalence, consequences, and management.
Seizure. 2019 May;68:9-15. doi: 10.1016/j.seizure.2018.05.013. Epub 2018 May 21.
4
Is seizure frequency variance a predictable quantity?
Ann Clin Transl Neurol. 2018 Jan 9;5(2):201-207. doi: 10.1002/acn3.519. eCollection 2018 Feb.
5
Multi-day rhythms modulate seizure risk in epilepsy.
Nat Commun. 2018 Jan 8;9(1):88. doi: 10.1038/s41467-017-02577-y.
7
Seizure self-prediction: Myth or missed opportunity?
Seizure. 2017 Oct;51:180-185. doi: 10.1016/j.seizure.2017.08.011. Epub 2017 Sep 1.
8
Monte Carlo simulations of randomized clinical trials in epilepsy.
Ann Clin Transl Neurol. 2017 May 24;4(8):544-552. doi: 10.1002/acn3.426. eCollection 2017 Aug.
9
A big data approach to the development of mixed-effects models for seizure count data.
Epilepsia. 2017 May;58(5):835-844. doi: 10.1111/epi.13727. Epub 2017 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验