Animal Physiology and Development, Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany; The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), University of Heidelberg, Heidelberg, Germany.
Animal Physiology and Development, Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany; The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), University of Heidelberg, Heidelberg, Germany.
Dev Biol. 2020 Jul 1;463(1):11-25. doi: 10.1016/j.ydbio.2020.03.001. Epub 2020 Mar 12.
The notochord is an embryonic tissue that acts as a hydrostatic skeleton until ossification begins in vertebrates. It is composed of outer sheath cells and inner vacuolated cells, which are generated from a common pool of disc-shaped precursors. Notochord extension during early embryogenesis is driven by the growth of vacuolated cells, reflecting in turn the expansion of their inner vacuole. Here we use desmogon, a novel desmosomal cadherin, to follow notochord development and regeneration in medaka (Oryzias latipes). We trace desmogon + disc-shaped precursors at the single cell level to demonstrate that they operate as unipotent progenitors, giving rise to either sheath or vacuolated cells. We reveal that once specified, vacuolated cells grow asynchronously and drive notochord expansion bi-directionally. Additionally, we uncover distinct regenerative responses in the notochord, which depend on the nature of the injury sustained. By generating a desmogon CRISPR mutant we demonstrate that this cadherin is essential for proper vacuolated cell shape and therefore correct notochord and spine morphology. Our work expands the repertoire of model systems to study dynamic aspects of the notochord in vivo, and provides new insights in its development and regeneration properties.
脊索是一种胚胎组织,在脊椎动物开始骨化之前,它充当着流体静力学骨骼。它由外鞘细胞和内空泡细胞组成,这些细胞由一个共同的盘状前体细胞池产生。早期胚胎发生过程中脊索的延伸是由空泡细胞的生长驱动的,这反过来又反映了它们内部空泡的扩张。在这里,我们使用一种新型的桥粒钙黏蛋白 desmogon 来追踪斑马鱼(Oryzias latipes)的脊索发育和再生。我们在单细胞水平上追踪 desmogon + 盘状前体细胞,证明它们作为单能祖细胞运作,产生鞘或空泡细胞。我们揭示了一旦被指定,空泡细胞就会以不同步的方式生长,并双向驱动脊索的扩张。此外,我们还揭示了脊索中不同的再生反应,这取决于所受损伤的性质。通过生成 desmogon CRISPR 突变体,我们证明这种钙黏蛋白对于正确的空泡细胞形状以及正确的脊索和脊柱形态是必不可少的。我们的工作扩展了模型系统的范围,以研究体内脊索的动态方面,并为其发育和再生特性提供了新的见解。