Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany.
DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany; Institute of Pharmacology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany.
J Mol Cell Cardiol. 2020 Apr;141:30-42. doi: 10.1016/j.yjmcc.2020.03.004. Epub 2020 Mar 13.
Pathological cardiac hypertrophy is an independent risk for heart failure (HF) and sudden death. Deciphering signaling pathways regulating intracellular Ca homeostasis that control adaptive and pathological cardiac growth may enable identification of novel therapeutic targets. The objective of the present study is to determine the role of the store-operated calcium entry-associated regulatory factor (Saraf), encoded by the Tmem66 gene, on cardiac growth control in vitro and in vivo. Saraf is a single-pass membrane protein located at the sarco/endoplasmic reticulum and regulates intracellular calcium homeostasis. We found that Saraf expression was upregulated in the hypertrophied myocardium and was sufficient for cell growth in response to neurohumoral stimulation. Increased Saraf expression caused cell growth, which was associated with dysregulation of calcium-dependent signaling and sarcoplasmic reticulum calcium content. In vivo, Saraf augmented cardiac myocyte growth in response to angiotensin II and resulted in increased cardiac remodeling together with worsened cardiac function. Mechanistically, Saraf activated mTORC1 (mechanistic target of rapamycin complex 1) and increased protein synthesis, while mTORC1 inhibition blunted Saraf-dependent cell growth. In contrast, the hearts of Saraf knockout mice and Saraf-deficient myocytes did not show any morphological or functional alterations after neurohumoral stimulation, but Saraf depletion resulted in worsened cardiac function after acute pressure overload. SARAF knockout blunted transverse aortic constriction cardiac myocyte hypertrophy and impaired cardiac function, demonstrating a role for SARAF in compensatory myocyte growth. Collectively, these results reveal a novel link between sarcoplasmic reticulum calcium homeostasis and mTORC1 activation that is regulated by Saraf.
病理性心肌肥厚是心力衰竭(HF)和猝死的独立危险因素。阐明调节细胞内 Ca2+稳态的信号通路,控制适应性和病理性心肌生长,可能有助于确定新的治疗靶点。本研究旨在确定由 Tmem66 基因编码的储存操作钙进入相关调节因子(Saraf)在体外和体内对心脏生长控制的作用。Saraf 是一种位于肌浆/内质网的单次跨膜蛋白,调节细胞内钙稳态。我们发现,Saraf 在肥厚心肌中的表达上调,并足以响应神经激素刺激促进细胞生长。Saraf 表达增加导致细胞生长,这与钙依赖性信号和肌浆网钙含量的失调有关。在体内,Saraf 增强了心肌细胞对血管紧张素 II 的反应性,导致心脏重构增加,心功能恶化。在机制上,Saraf 激活了 mTORC1(雷帕霉素靶蛋白复合物 1)并增加了蛋白质合成,而 mTORC1 抑制减弱了 Saraf 依赖性细胞生长。相比之下,神经激素刺激后,Saraf 敲除小鼠和 Saraf 缺陷心肌细胞没有显示出任何形态或功能改变,但急性压力超负荷后 Saraf 耗竭导致心功能恶化。SARAF 敲除减弱了主动脉缩窄心肌细胞的肥厚和心功能受损,表明 SARAF 在代偿性心肌生长中起作用。总之,这些结果揭示了肌浆网钙稳态和 mTORC1 激活之间受 Saraf 调节的新联系。