Suppr超能文献

近端肾小管中 Claudin 的组合表达及其功能后果。

Combinatorial expression of claudins in the proximal renal tubule and its functional consequences.

机构信息

Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas.

Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas.

出版信息

Am J Physiol Renal Physiol. 2020 May 1;318(5):F1138-F1146. doi: 10.1152/ajprenal.00057.2019. Epub 2020 Mar 16.

Abstract

The proximal renal tubule (PT) is characterized by a highly conductive paracellular pathway, which contributes to a significant amount of solute and water reabsorption by the kidney. Claudins are tight junction proteins that, in part, determine the paracellular permeability of epithelia. In the present study, we determined the expression pattern of the major PT claudins. We found that claudin-2 and claudin-10 are coexpressed throughout the PT, whereas claudin-3 is coexpressed with claudin-2 predominantly in the proximal straight tubule. Additionally, claudin-2 and claudin-3 are expressed separately within mutually exclusive populations of descending thin limbs. We developed a novel double-inducible Madin-Darby canine kidney I cell model to characterize in vitro the functional effect of coexpression of PT claudins. In keeping with previous studies, we found that claudin-2 alone primarily increased cation (Na and Ca) permeability, whereas claudin-10a alone increased anion (Cl) permeability. Coexpression of claudin-2 and claudin-10a together led to a weak physical interaction between the isoforms and the formation of a monolayer with high conductance but neutral charge selectivity. Claudin-3 expression had a negligible effect on all measures of cell permeability, whether expressed alone or together with claudin-2. In cells coexpressing a claudin-2 mutant, S68C, together with claudin-10a, inhibition of cation permeability through the claudin-2 pore with a thiol-reactive pore blocker did not block anion permeation through claudin-10a. We conclude that claudin-2 and claudin-10a form independent paracellular cation- and anion-selective channels that function in parallel.

摘要

近端肾小管 (PT) 的特征是具有高度可传导的细胞旁途径,这有助于肾脏大量重吸收溶质和水。紧密连接蛋白 Claudin 在一定程度上决定了上皮细胞的细胞旁通透性。在本研究中,我们确定了主要 PT Claudin 的表达模式。我们发现 Claudin-2 和 Claudin-10 在整个 PT 中共同表达,而 Claudin-3 主要在近端直细管中与 Claudin-2 共同表达。此外, Claudin-2 和 Claudin-3 分别在相互排斥的降支细段群体中表达。我们开发了一种新型的双重诱导 Madin-Darby 犬肾 I 细胞模型,以体外表征 PT Claudin 共表达的功能效应。与之前的研究一致,我们发现 Claudin-2 单独主要增加阳离子(Na 和 Ca)通透性,而 Claudin-10a 单独增加阴离子(Cl)通透性。 Claudin-2 和 Claudin-10a 的共表达导致两种同工型之间的弱物理相互作用,并形成具有高电导但中性电荷选择性的单层。 Claudin-3 的表达对细胞通透性的所有测量都没有影响,无论是单独表达还是与 Claudin-2 一起表达。在共表达 Claudin-2 突变体 S68C 与 Claudin-10a 的细胞中,用硫醇反应性孔阻滞剂抑制 Claudin-2 孔的阳离子通透性并不能阻止 Claudin-10a 的阴离子渗透。我们得出结论, Claudin-2 和 Claudin-10a 形成独立的细胞旁阳离子和阴离子选择性通道,它们平行运作。

相似文献

1
Combinatorial expression of claudins in the proximal renal tubule and its functional consequences.
Am J Physiol Renal Physiol. 2020 May 1;318(5):F1138-F1146. doi: 10.1152/ajprenal.00057.2019. Epub 2020 Mar 16.
2
Tight junctions of the proximal tubule and their channel proteins.
Pflugers Arch. 2017 Aug;469(7-8):877-887. doi: 10.1007/s00424-017-2001-3. Epub 2017 Jun 9.
3
Claudin-10a Deficiency Shifts Proximal Tubular Cl Permeability to Cation Selectivity Claudin-2 Redistribution.
J Am Soc Nephrol. 2022 Apr;33(4):699-717. doi: 10.1681/ASN.2021030286. Epub 2022 Jan 14.
4
Water channels and barriers formed by claudins.
Ann N Y Acad Sci. 2017 Jun;1397(1):100-109. doi: 10.1111/nyas.13383.
5
Claudin-2-deficient mice are defective in the leaky and cation-selective paracellular permeability properties of renal proximal tubules.
Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):8011-6. doi: 10.1073/pnas.0912901107. Epub 2010 Apr 12.
6
Claudins in barrier and transport function-the kidney.
Pflugers Arch. 2017 Jan;469(1):105-113. doi: 10.1007/s00424-016-1906-6. Epub 2016 Nov 23.
7
Charge-selective claudin channels.
Ann N Y Acad Sci. 2012 Jun;1257:20-8. doi: 10.1111/j.1749-6632.2012.06555.x.
8
Claudin-8 expression in Madin-Darby canine kidney cells augments the paracellular barrier to cation permeation.
J Biol Chem. 2003 May 9;278(19):17350-9. doi: 10.1074/jbc.M213286200. Epub 2003 Mar 2.
9
Evidence for a role of claudin 2 as a proximal tubular stress responsive paracellular water channel.
Toxicol Appl Pharmacol. 2014 Sep 1;279(2):163-72. doi: 10.1016/j.taap.2014.05.013. Epub 2014 Jun 5.

引用本文的文献

1
Paracellular Transport and Renal Tubule Calcium Handling: Emerging Roles in Kidney Stone Disease.
J Am Soc Nephrol. 2024 Dec 1;35(12):1758-1767. doi: 10.1681/ASN.0000000506. Epub 2024 Aug 29.
2
Biophysics of claudin proteins in tight junction architecture: Three decades of progress.
Biophys J. 2024 Aug 20;123(16):2363-2378. doi: 10.1016/j.bpj.2024.06.010. Epub 2024 Jun 10.
4
Integrating Continuous Transepithelial Flux Measurements into an Ussing Chamber Set-Up.
Int J Mol Sci. 2024 Feb 13;25(4):2252. doi: 10.3390/ijms25042252.
5
High dietary K intake inhibits proximal tubule transport.
Am J Physiol Renal Physiol. 2023 Aug 1;325(2):F224-F234. doi: 10.1152/ajprenal.00013.2023. Epub 2023 Jun 15.
6
Nanoscale segregation of channel and barrier claudins enables paracellular ion flux.
Nat Commun. 2022 Aug 25;13(1):4985. doi: 10.1038/s41467-022-32533-4.
7
Tight junction channel regulation by interclaudin interference.
Nat Commun. 2022 Jun 30;13(1):3780. doi: 10.1038/s41467-022-31587-8.
8
Effects of fecal stream deprivation on human intestinal barrier after loop ileostomy.
J Gastroenterol Hepatol. 2022 Jun;37(6):1119-1130. doi: 10.1111/jgh.15867. Epub 2022 Apr 26.
9
Claudins in kidney health and disease.
Kidney Res Clin Pract. 2022 May;41(3):275-287. doi: 10.23876/j.krcp.21.279. Epub 2022 Mar 15.
10
Dysregulation of Intestinal Physiology by Aflatoxicosis in the Gilthead Seabream ().
Front Physiol. 2021 Dec 20;12:741192. doi: 10.3389/fphys.2021.741192. eCollection 2021.

本文引用的文献

1
Claudin-2-mediated cation and water transport share a common pore.
Acta Physiol (Oxf). 2017 Feb;219(2):521-536. doi: 10.1111/apha.12742. Epub 2016 Jul 20.
2
Paracellular epithelial sodium transport maximizes energy efficiency in the kidney.
J Clin Invest. 2016 Jul 1;126(7):2509-18. doi: 10.1172/JCI83942. Epub 2016 May 23.
3
Descending thin limb of the intermediate loop expresses both aquaporin 1 and urea transporter A2 in the mouse kidney.
Histochem Cell Biol. 2016 Jul;146(1):1-12. doi: 10.1007/s00418-016-1434-7. Epub 2016 Apr 18.
4
Deep Sequencing in Microdissected Renal Tubules Identifies Nephron Segment-Specific Transcriptomes.
J Am Soc Nephrol. 2015 Nov;26(11):2669-77. doi: 10.1681/ASN.2014111067. Epub 2015 Mar 27.
6
Comprehensive cysteine-scanning mutagenesis reveals Claudin-2 pore-lining residues with different intrapore locations.
J Biol Chem. 2014 Mar 7;289(10):6475-6484. doi: 10.1074/jbc.M113.536888. Epub 2014 Jan 16.
7
Claudins and the modulation of tight junction permeability.
Physiol Rev. 2013 Apr;93(2):525-69. doi: 10.1152/physrev.00019.2012.
8
Claudins and the kidney.
Annu Rev Physiol. 2013;75:479-501. doi: 10.1146/annurev-physiol-030212-183705. Epub 2012 Nov 5.
9
Deletion of claudin-10 (Cldn10) in the thick ascending limb impairs paracellular sodium permeability and leads to hypermagnesemia and nephrocalcinosis.
Proc Natl Acad Sci U S A. 2012 Aug 28;109(35):14241-6. doi: 10.1073/pnas.1203834109. Epub 2012 Aug 13.
10
The epithelial sodium/proton exchanger, NHE3, is necessary for renal and intestinal calcium (re)absorption.
Am J Physiol Renal Physiol. 2012 Apr 15;302(8):F943-56. doi: 10.1152/ajprenal.00504.2010. Epub 2011 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验