文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

纳米尺度上的通道和屏障紧密连接蛋白的分隔使细胞旁离子通量成为可能。

Nanoscale segregation of channel and barrier claudins enables paracellular ion flux.

机构信息

Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany.

Institute of Physiology, Christian-Albrechts-Universität zu Kiel, 24118, Kiel, Germany.

出版信息

Nat Commun. 2022 Aug 25;13(1):4985. doi: 10.1038/s41467-022-32533-4.


DOI:10.1038/s41467-022-32533-4
PMID:36008380
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9411157/
Abstract

The paracellular passage of ions and small molecules across epithelia is controlled by tight junctions, complex meshworks of claudin polymers that form tight seals between neighboring cells. How the nanoscale architecture of tight junction meshworks enables paracellular passage of specific ions or small molecules without compromising barrier function is unknown. Here we combine super-resolution stimulated emission depletion microscopy in live and fixed cells and tissues, multivariate classification of super-resolution images and fluorescence resonance energy transfer to reveal the nanoscale organization of tight junctions formed by mammalian claudins. We show that only a subset of claudins can assemble into characteristic homotypic meshworks, whereas tight junctions formed by multiple claudins display nanoscale organization principles of intermixing, integration, induction, segregation, and exclusion of strand assemblies. Interestingly, channel-forming claudins are spatially segregated from barrier-forming claudins via determinants mainly encoded in their extracellular domains also known to harbor mutations leading to human diseases. Electrophysiological analysis of claudins in epithelial cells suggests that nanoscale segregation of distinct channel-forming claudins enables barrier function combined with specific paracellular ion flux across tight junctions.

摘要

上皮细胞中离子和小分子的旁细胞通路由紧密连接控制,紧密连接是连接相邻细胞的紧密密封的 Claudin 聚合物的复杂网状结构。纳米级紧密连接网状结构如何使特定离子或小分子能够通过而不会损害屏障功能尚不清楚。在这里,我们结合了活细胞和固定细胞和组织中的超分辨率受激发射损耗显微镜、超分辨率图像的多元分类和荧光共振能量转移,以揭示哺乳动物 Claudin 形成的紧密连接的纳米级组织。我们表明,只有一部分 Claudin 可以组装成特征同型网状结构,而由多种 Claudin 形成的紧密连接则显示出混合、整合、诱导、隔离和链组装排斥的纳米级组织原则。有趣的是,通过主要编码在外​​部结构域中的决定因素,通道形成 Claudin 与屏障形成 Claudin 在空间上分离,这些决定因素也已知包含导致人类疾病的突变。上皮细胞中 Claudin 的电生理学分析表明,不同通道形成 Claudin 的纳米级分离能够实现屏障功能,同时结合紧密连接中特定的旁细胞离子通量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d583/9411157/b4d027694351/41467_2022_32533_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d583/9411157/54a570c9dfc7/41467_2022_32533_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d583/9411157/310315a2880e/41467_2022_32533_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d583/9411157/4e15447a4122/41467_2022_32533_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d583/9411157/06d7c6e8a3ec/41467_2022_32533_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d583/9411157/4f153aadac73/41467_2022_32533_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d583/9411157/b4d027694351/41467_2022_32533_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d583/9411157/54a570c9dfc7/41467_2022_32533_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d583/9411157/310315a2880e/41467_2022_32533_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d583/9411157/4e15447a4122/41467_2022_32533_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d583/9411157/06d7c6e8a3ec/41467_2022_32533_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d583/9411157/4f153aadac73/41467_2022_32533_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d583/9411157/b4d027694351/41467_2022_32533_Fig6_HTML.jpg

相似文献

[1]
Nanoscale segregation of channel and barrier claudins enables paracellular ion flux.

Nat Commun. 2022-8-25

[2]
Tight junction channel regulation by interclaudin interference.

Nat Commun. 2022-6-30

[3]
Paracellular barrier and channel functions of TJ claudins in organizing biological systems: advances in the field of barriology revealed in knockout mice.

Semin Cell Dev Biol. 2014-12

[4]
Claudins: vital partners in transcellular and paracellular transport coupling.

Pflugers Arch. 2017-1

[5]
Channel functions of claudins in the organization of biological systems.

Biochim Biophys Acta Biomembr. 2020-5-20

[6]
The Claudins: From Tight Junctions to Biological Systems.

Trends Biochem Sci. 2018-10-25

[7]
Computational Modeling of Claudin Structure and Function.

Int J Mol Sci. 2020-1-23

[8]
Ruffles and spikes: Control of tight junction morphology and permeability by claudins.

Biochim Biophys Acta Biomembr. 2020-5-7

[9]
Tight junction proteins as channel formers and barrier builders.

Ann N Y Acad Sci. 2009-5

[10]
Tight junctions of the proximal tubule and their channel proteins.

Pflugers Arch. 2017-8

引用本文的文献

[1]
Rho-ROCK liberates sequestered claudin for rapid de novo tight junction formation.

Elife. 2025-7-24

[2]
Functionalization of Silica Nanoparticles for Tailored Interactions with Intestinal Cells and Chemical Modulation of Paracellular Permeability.

Small Sci. 2024-8-1

[3]
Tight junction proteins in glial tumors development and progression.

Front Cell Neurosci. 2025-2-3

[4]
Key Claudins at the Blood-Retina Barriers.

Adv Exp Med Biol. 2025

[5]
Ion permeability profiles of renal paracellular channel-forming claudins.

Acta Physiol (Oxf). 2025-2

[6]
Ion and water permeation through claudin-10b and claudin-15 paracellular channels.

Comput Struct Biotechnol J. 2024-11-13

[7]
Apical integrins as a switchable target to regulate the epithelial barrier.

J Cell Sci. 2024-12-15

[8]
Paracellular Transport and Renal Tubule Calcium Handling: Emerging Roles in Kidney Stone Disease.

J Am Soc Nephrol. 2024-12-1

[9]
The Combined Use of Cinnamaldehyde and Vitamin C Is Beneficial for Better Carcass Character and Intestinal Health of Broilers.

Int J Mol Sci. 2024-8-1

[10]
Nanostructure-Mediated Transport of Therapeutics through Epithelial Barriers.

Int J Mol Sci. 2024-6-28

本文引用的文献

[1]
Claudin-10a Deficiency Shifts Proximal Tubular Cl Permeability to Cation Selectivity Claudin-2 Redistribution.

J Am Soc Nephrol. 2022-4

[2]
Claudin-2 and claudin-12 form independent, complementary pores required to maintain calcium homeostasis.

Proc Natl Acad Sci U S A. 2021-11-30

[3]
Molecular architecture and assembly of the tight junction backbone.

Biochim Biophys Acta Biomembr. 2020-3-26

[4]
Combinatorial expression of claudins in the proximal renal tubule and its functional consequences.

Am J Physiol Renal Physiol. 2020-3-16

[5]
Assembly of Tight Junction Strands: Claudin-10b and Claudin-3 Form Homo-Tetrameric Building Blocks that Polymerise in a Channel-Independent Manner.

J Mol Biol. 2020-3-4

[6]
Super-Resolution Imaging of Tight and Adherens Junctions: Challenges and Open Questions.

Int J Mol Sci. 2020-1-23

[7]
Phase Separation of Zonula Occludens Proteins Drives Formation of Tight Junctions.

Cell. 2019-10-31

[8]
Claudins and JAM-A coordinately regulate tight junction formation and epithelial polarity.

J Cell Biol. 2019-8-29

[9]
Morphologic determinant of tight junctions revealed by claudin-3 structures.

Nat Commun. 2019-2-18

[10]
Multiple claudin-claudin interfaces are required for tight junction strand formation and inherent flexibility.

Commun Biol. 2018-5-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索