Suppr超能文献

通过心动周期特征学习架构直接估计左心室射血分数。

Direct estimation of left ventricular ejection fraction via a cardiac cycle feature learning architecture.

作者信息

Li Tianyang, Wei Benzheng, Cong Jinyu, Hong Yanfei, Li Shuo

机构信息

College of Science and Technology, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao, 266112, China; Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266112, China.

Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao, 266112, China; Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266112, China.

出版信息

Comput Biol Med. 2020 Mar;118:103659. doi: 10.1016/j.compbiomed.2020.103659. Epub 2020 Feb 15.

Abstract

The left ventricular ejection fraction is of significant importance for the early identification and diagnosis of cardiac disease. However, estimation of the left ventricular ejection fraction with consistently reliable and high accuracy remains a great challenge, owing to the high variability of cardiac structures and the complexity of the temporal dynamics in the cardiac magnetic resonance imaging sequences. The popular methods of left ventricular ejection fraction estimation rely on the left ventricular volume. Thus, strong prior knowledge is often necessary, impeding the ease of use of the existing methods as clinical tools. In this study, we propose a cardiac cycle feature learning architecture for achieving an accurate and reliable estimation of the left ventricular ejection fraction. The proposed method constructs a cardiac cycle extraction module that generates and analyzes an optical flow to obtain the cardiac cycle of all images, a motion feature fusion and extraction module for temporal modeling of the cardiac sequences, and a fully connected regression module for achieving a direct estimation. Experiments on 2900 left ventricle segments of 145 subjects from short-axis magnetic resonance imaging sequences of multiple lengths prove that our proposed method achieves reliable performance (correlation coefficient: 0.946; mean absolute error 2.67; standard deviation: 3.23). As compared with the current state-of-the-art method, our proposed method improves the performance by approximately 3% insofar as the mean absolute error. As the first solution for estimating the left ventricular ejection fraction directly, our proposed method demonstrates great potential for future clinical applications.

摘要

左心室射血分数对于心脏病的早期识别和诊断具有重要意义。然而,由于心脏结构的高度变异性以及心脏磁共振成像序列中时间动态的复杂性,以始终可靠且高精度地估计左心室射血分数仍然是一项巨大挑战。常用的左心室射血分数估计方法依赖于左心室容积。因此,通常需要很强的先验知识,这阻碍了现有方法作为临床工具的易用性。在本研究中,我们提出了一种心动周期特征学习架构,以实现对左心室射血分数的准确可靠估计。所提出的方法构建了一个心动周期提取模块,该模块生成并分析光流以获取所有图像的心动周期;一个用于心脏序列时间建模的运动特征融合与提取模块;以及一个用于实现直接估计的全连接回归模块。对来自多个长度的短轴磁共振成像序列的145名受试者的2900个左心室节段进行的实验证明,我们提出的方法具有可靠的性能(相关系数:0.946;平均绝对误差2.67;标准差:3.23)。与当前的最先进方法相比,我们提出的方法在平均绝对误差方面性能提高了约3%。作为直接估计左心室射血分数的首个解决方案,我们提出的方法在未来临床应用中显示出巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验