Suppr超能文献

利用共享 SptDenNet 从心脏 MRI 无分割预测多层左心室射血分数。

Multislice left ventricular ejection fraction prediction from cardiac MRIs without segmentation using shared SptDenNet.

机构信息

School of Artificial Intelligence, Chongqing University of Technology, Chongqing 400054, China.

School of Artificial Intelligence, Chongqing University of Technology, Chongqing 400054, China.

出版信息

Comput Med Imaging Graph. 2020 Dec;86:101795. doi: 10.1016/j.compmedimag.2020.101795. Epub 2020 Oct 9.

Abstract

We propose a spatiotemporal model for cardiac magnetic resonance images (MRI) named SptDenNet. The proposed model is based on DenseNet and extracts spatial and temporal features simultaneously to exploit three-dimensional information on the heart over the cardiac loop cycle. To balance the model performance and efficiency, we construct a shared end-to-end framework, in which all frames of each selected short-axis (SAX) view slices are input to SptDenNet individually to extract spatiotemporal features. Then, the extracted features of all selected SAX view slices of a patient are concatenated and input to the subsequent fully connected layer and then a softmax layer to predict the left ventricular ejection fraction directly. To address the problem of class imbalance, we use FocalLoss function by reshaping the standard cross-entropy loss such that it down-weights the loss assigned to well-classified samples. We validate our proposed framework on the Second Annual Data Science Bowl dataset. Our prediction for the left ventricular ejection fraction obtains results comparable with state-of-the-art end-to-end approaches but without segmentation. The average mean absolute error of the ejection fraction is 6.84. To further verify the effectiveness of the proposed framework, we use 4-chamber view images from the same dataset to predict the cardiac function; we obtain an accuracy of 86.07%. Our approach constructs an end-to-end model to predict the ejection fraction automatically without using image segmentation, which helps reduce manual work. Moreover, the proposed approach is computationally efficient.

摘要

我们提出了一种名为 SptDenNet 的心脏磁共振图像(MRI)时空模型。所提出的模型基于 DenseNet,可同时提取空间和时间特征,以利用心脏在心脏循环周期上的三维信息。为了平衡模型性能和效率,我们构建了一个共享的端到端框架,其中每个选定的短轴(SAX)视图切片的所有帧都单独输入到 SptDenNet 中,以提取时空特征。然后,将患者所有选定的 SAX 视图切片的提取特征连接起来,并输入到后续的全连接层,然后输入到 softmax 层,直接预测左心室射血分数。为了解决类不平衡问题,我们通过重塑标准交叉熵损失来使用 FocalLoss 函数,使得它对分类良好的样本的损失进行加权。我们在第二届年度数据科学碗数据集上验证了我们提出的框架。我们对左心室射血分数的预测结果与最先进的端到端方法相当,但不需要分割。射血分数的平均均方误差为 6.84。为了进一步验证所提出的框架的有效性,我们使用来自同一数据集的四腔视图图像来预测心脏功能;我们获得了 86.07%的准确率。我们的方法构建了一个端到端模型,可以自动预测射血分数,而无需使用图像分割,这有助于减少人工工作。此外,所提出的方法计算效率高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验