School of Artificial Intelligence, Chongqing University of Technology, Chongqing 400054, China.
School of Artificial Intelligence, Chongqing University of Technology, Chongqing 400054, China.
Comput Med Imaging Graph. 2020 Dec;86:101795. doi: 10.1016/j.compmedimag.2020.101795. Epub 2020 Oct 9.
We propose a spatiotemporal model for cardiac magnetic resonance images (MRI) named SptDenNet. The proposed model is based on DenseNet and extracts spatial and temporal features simultaneously to exploit three-dimensional information on the heart over the cardiac loop cycle. To balance the model performance and efficiency, we construct a shared end-to-end framework, in which all frames of each selected short-axis (SAX) view slices are input to SptDenNet individually to extract spatiotemporal features. Then, the extracted features of all selected SAX view slices of a patient are concatenated and input to the subsequent fully connected layer and then a softmax layer to predict the left ventricular ejection fraction directly. To address the problem of class imbalance, we use FocalLoss function by reshaping the standard cross-entropy loss such that it down-weights the loss assigned to well-classified samples. We validate our proposed framework on the Second Annual Data Science Bowl dataset. Our prediction for the left ventricular ejection fraction obtains results comparable with state-of-the-art end-to-end approaches but without segmentation. The average mean absolute error of the ejection fraction is 6.84. To further verify the effectiveness of the proposed framework, we use 4-chamber view images from the same dataset to predict the cardiac function; we obtain an accuracy of 86.07%. Our approach constructs an end-to-end model to predict the ejection fraction automatically without using image segmentation, which helps reduce manual work. Moreover, the proposed approach is computationally efficient.
我们提出了一种名为 SptDenNet 的心脏磁共振图像(MRI)时空模型。所提出的模型基于 DenseNet,可同时提取空间和时间特征,以利用心脏在心脏循环周期上的三维信息。为了平衡模型性能和效率,我们构建了一个共享的端到端框架,其中每个选定的短轴(SAX)视图切片的所有帧都单独输入到 SptDenNet 中,以提取时空特征。然后,将患者所有选定的 SAX 视图切片的提取特征连接起来,并输入到后续的全连接层,然后输入到 softmax 层,直接预测左心室射血分数。为了解决类不平衡问题,我们通过重塑标准交叉熵损失来使用 FocalLoss 函数,使得它对分类良好的样本的损失进行加权。我们在第二届年度数据科学碗数据集上验证了我们提出的框架。我们对左心室射血分数的预测结果与最先进的端到端方法相当,但不需要分割。射血分数的平均均方误差为 6.84。为了进一步验证所提出的框架的有效性,我们使用来自同一数据集的四腔视图图像来预测心脏功能;我们获得了 86.07%的准确率。我们的方法构建了一个端到端模型,可以自动预测射血分数,而无需使用图像分割,这有助于减少人工工作。此外,所提出的方法计算效率高。