Bonhome-Espinosa Ana Belén, Campos Fernando, Durand-Herrera Daniel, Sánchez-López José Darío, Schaub Sébastien, Durán Juan D G, Lopez-Lopez Modesto T, Carriel Víctor
Department of Applied Physics, University of Granada, Faculty of Science, Campus de Fuentenueva, 18071, Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain.
Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain; Department of Histology & Tissue Engineering Group, Faculty of Medicine, University of Granada, Spain.
J Mech Behav Biomed Mater. 2020 Apr;104:103619. doi: 10.1016/j.jmbbm.2020.103619. Epub 2020 Jan 9.
The encapsulation of cells into biopolymer matrices enables the preparation of engineered substitute tissues. Here we report the generation of novel 3D magnetic biomaterials by encapsulation of magnetic nanoparticles and human hyaline chondrocytes within fibrin-agarose hydrogels, with potential use as articular hyaline cartilage-like tissues. By rheological measurements we observed that, (i) the incorporation of magnetic nanoparticles resulted in increased values of the storage and loss moduli for the different times of cell culture; and (ii) the incorporation of human hyaline chondrocytes into nonmagnetic and magnetic fibrin-agarose biomaterials produced a control of their swelling capacity in comparison with acellular nonmagnetic and magnetic fibrin-agarose biomaterials. Interestingly, the in vitro viability and proliferation results showed that the inclusion of magnetic nanoparticles did not affect the cytocompatibility of the biomaterials. What is more, immunohistochemistry showed that the inclusion of magnetic nanoparticles did not negatively affect the expression of type II collagen of the human hyaline chondrocytes. Summarizing, our results suggest that the generation of engineered hyaline cartilage-like tissues by using magnetic fibrin-agarose hydrogels is feasible. The resulting artificial tissues combine a stronger and stable mechanical response, with promising in vitro cytocompatibility. Further research would be required to elucidate if for longer culture times additional features typical of the extracellular matrix of cartilage could be expressed by human hyaline chondrocytes within magnetic fibrin-agarose hydrogels.
将细胞包裹于生物聚合物基质中能够制备工程替代组织。在此,我们报告了通过将磁性纳米颗粒和人透明软骨细胞包裹于纤维蛋白-琼脂糖水凝胶中生成新型三维磁性生物材料,其具有作为关节透明软骨样组织的潜在用途。通过流变学测量,我们观察到:(i)在不同细胞培养时间下,磁性纳米颗粒的掺入导致储能模量和损耗模量值增加;(ii)与无细胞的非磁性和磁性纤维蛋白-琼脂糖生物材料相比,将人透明软骨细胞掺入非磁性和磁性纤维蛋白-琼脂糖生物材料中可控制其膨胀能力。有趣的是,体外活力和增殖结果表明,磁性纳米颗粒的掺入并不影响生物材料的细胞相容性。此外,免疫组织化学显示,磁性纳米颗粒的掺入并未对人透明软骨细胞II型胶原蛋白的表达产生负面影响。总之,我们的结果表明,使用磁性纤维蛋白-琼脂糖水凝胶生成工程化透明软骨样组织是可行的。所得人工组织兼具更强且稳定的力学响应以及良好的体外细胞相容性。若要阐明在更长培养时间内,磁性纤维蛋白-琼脂糖水凝胶中的人透明软骨细胞是否能够表达软骨细胞外基质的其他典型特征,则需要进一步研究。