Suppr超能文献

适用于边际农业的健康且具韧性的谷物和假谷物:提高营养生物利用率的分子进展

Healthy and Resilient Cereals and Pseudo-Cereals for Marginal Agriculture: Molecular Advances for Improving Nutrient Bioavailability.

作者信息

Rodríguez Juan Pablo, Rahman Hifzur, Thushar Sumitha, Singh Rakesh K

机构信息

Crop Diversification and Genetics Program, International Center for Biosaline Agriculture, Dubai, United Arab Emirates.

出版信息

Front Genet. 2020 Feb 27;11:49. doi: 10.3389/fgene.2020.00049. eCollection 2020.

Abstract

With the ever-increasing world population, an extra 1.5 billion mouths need to be fed by 2050 with continuously dwindling arable land. Hence, it is imperative that extra food come from the marginal lands that are expected to be unsuitable for growing major staple crops under the adverse climate change scenario. Crop diversity provides right alternatives for marginal environments to improve food, feed, and nutritional security. Well-adapted and climate-resilient crops will be the best fit for such a scenario to produce seed and biomass. The minor millets are known for their high nutritional profile and better resilience for several abiotic stresses that make them the suitable crops for arid and salt-affected soils and poor-quality waters. Finger millet () and foxtail millet (), also considered as orphan crops, are highly tolerant grass crop species that grow well in marginal and degraded lands of Africa and Asia with better nutritional profile. Another category of grains, called pseudo-cereals, is considered as rich foods because of their protein quality and content, high mineral content, and healthy and balance food quality. Quinoa (), amaranth ( sp.), and buckwheat () fall under this category. Nevertheless, both minor millets and pseudo-cereals are morphologically different, although similar for micronutrient bioavailability, and their grains are gluten-free. The cultivation of these millets can make dry lands productive and ensure future food as well as nutritional security. Although the natural nutrient profile of these crop plant species is remarkably good, little development has occurred in advances in molecular genetics and breeding efforts to improve the bioavailability of nutrients. Recent advances in NGS have enabled the genome and transcriptome sequencing of these millets and pseudo-cereals for the faster development of molecular markers and application in molecular breeding. Genomic information on finger millet (1,196 Mb with 85,243 genes); , a model small millet (well-annotated draft genome of 420 Mb with 38,801 protein-coding genes); amaranth (466 Mb genome and 23,059 protein-coding genes); buckwheat (genome size of 1.12 Gb with 35,816 annotated genes); and quinoa (genome size of 1.5 Gb containing 54,438 protein-coding genes) could pave the way for the genetic improvement of these grains. These genomic resources are an important first step toward genetic improvement of these crops. This review highlights the current advances and available resources on genomics to improve nutrient bioavailability in these five suitable crops for the sustained healthy livelihood.

摘要

随着世界人口不断增长,到2050年预计需要额外养活15亿人,而可耕地却在持续减少。因此,必须利用边际土地来获取更多食物,在气候变化不利的情况下,这些边际土地预计不适于种植主要的主食作物。作物多样性为边际环境提供了合适的选择,以改善粮食、饲料和营养安全。适应性良好且具有气候韧性的作物将最适合这种情况,用于生产种子和生物质。小杂粮以其高营养成分以及对多种非生物胁迫的较强耐受性而闻名,这使得它们成为干旱和盐碱化土壤以及劣质水域的适宜作物。龙爪稷()和粟(),也被视为小众作物,是高度耐逆的禾本科作物品种,在非洲和亚洲的边际和退化土地上生长良好,营养成分更佳。另一类谷物,称为假谷物,因其蛋白质质量和含量、高矿物质含量以及健康均衡的食品质量而被视为富含营养的食物。藜麦()、苋属(苋属物种)和荞麦()都属于这一类。然而,尽管小杂粮和假谷物在微量营养素生物利用度方面相似,但它们在形态上有所不同,并且它们的谷粒不含麸质。种植这些小杂粮可以使旱地变得高产,并确保未来的粮食和营养安全。尽管这些作物植物物种的天然营养成分非常好,但在分子遗传学进展和育种努力以提高营养素生物利用度方面进展甚微。新一代测序技术(NGS)的最新进展使得对这些小杂粮和假谷物进行基因组和转录组测序成为可能,从而更快地开发分子标记并应用于分子育种。关于龙爪稷的基因组信息(11.96亿碱基对,有85243个基因);,一种模式小杂粮(注释完善稿基因组为4.2亿碱基对,有38801个蛋白质编码基因);苋属(基因组大小为4.66亿碱基对,有23059个蛋白质编码基因);荞麦(基因组大小为11.2亿碱基对,有35816个注释基因);以及藜麦(基因组大小为15亿碱基对,包含54438个蛋白质编码基因),这些信息可为这些谷物的遗传改良铺平道路。这些基因组资源是这些作物遗传改良的重要第一步。本综述着重介绍了基因组学方面的当前进展和可用资源,以提高这五种适宜作物的营养素生物利用度,从而实现可持续的健康生活。

相似文献

2
Genetic enhancement of climate-resilient traits in small millets: A review.
Heliyon. 2023 Mar 25;9(4):e14502. doi: 10.1016/j.heliyon.2023.e14502. eCollection 2023 Apr.
5
Genetic diversity and genomic resources available for the small millet crops to accelerate a New Green Revolution.
Front Plant Sci. 2015 Mar 24;6:157. doi: 10.3389/fpls.2015.00157. eCollection 2015.
6
Genetic resources and breeding approaches for improvement of amaranth ( spp.) and quinoa ().
Front Nutr. 2023 Jul 24;10:1129723. doi: 10.3389/fnut.2023.1129723. eCollection 2023.
8
Finger Millet [ (L.) Gaertn.] Improvement: Current Status and Future Interventions of Whole Genome Sequence.
Front Plant Sci. 2018 Jul 23;9:1054. doi: 10.3389/fpls.2018.01054. eCollection 2018.
9
Review: Shaping a sustainable food future by rediscovering long-forgotten ancient grains.
Plant Sci. 2018 Apr;269:136-142. doi: 10.1016/j.plantsci.2018.01.018. Epub 2018 Feb 5.
10
Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses.
Theor Appl Genet. 2015 Jan;128(1):1-14. doi: 10.1007/s00122-014-2399-3. Epub 2014 Sep 20.

引用本文的文献

3
Can Buckwheat Affect Health and Female Reproductive Functions?
Physiol Res. 2024 Dec 31;73(6):943-950. doi: 10.33549/physiolres.935379.
4
Screening of Nutritionally Important Components in Standard and Ancient Cereals.
Foods. 2024 Dec 19;13(24):4116. doi: 10.3390/foods13244116.
8
9
Metabolic pathways engineering for drought or/and heat tolerance in cereals.
Front Plant Sci. 2023 Sep 22;14:1111875. doi: 10.3389/fpls.2023.1111875. eCollection 2023.

本文引用的文献

1
Characterization of the Granule-Bound Starch Synthase I Gene in Chenopodium.
Plant Genome. 2015 Mar;8(1):eplantgenome2014.09.0051. doi: 10.3835/plantgenome2014.09.0051.
2
Climate change has likely already affected global food production.
PLoS One. 2019 May 31;14(5):e0217148. doi: 10.1371/journal.pone.0217148. eCollection 2019.
3
Fermentation of pseudocereals quinoa, canihua, and amaranth to improve mineral accessibility through degradation of phytate.
J Sci Food Agric. 2019 Aug 30;99(11):5239-5248. doi: 10.1002/jsfa.9793. Epub 2019 Jun 5.
5
Prospects of orphan crops in climate change.
Planta. 2019 Sep;250(3):695-708. doi: 10.1007/s00425-019-03129-y. Epub 2019 Mar 13.
6
Quinoa Abiotic Stress Responses: A Review.
Plants (Basel). 2018 Nov 29;7(4):106. doi: 10.3390/plants7040106.
7
Climate resilient crops for improving global food security and safety.
Plant Cell Environ. 2018 May;41(5):877-884. doi: 10.1111/pce.13207.
9
Multiple hybrid de novo genome assembly of finger millet, an orphan allotetraploid crop.
DNA Res. 2018 Feb 1;25(1):39-47. doi: 10.1093/dnares/dsx036.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验