文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

苦荞麦(鞑靼荞麦,Fagopyrum tataricum Garetn.)转录组的从头组装与分析揭示了参与盐胁迫响应的关键调控因子。

De Novo Assembly and Analysis of Tartary Buckwheat (Fagopyrum tataricum Garetn.) Transcriptome Discloses Key Regulators Involved in Salt-Stress Response.

作者信息

Wu Qi, Bai Xue, Zhao Wei, Xiang Dabing, Wan Yan, Yan Jun, Zou Liang, Zhao Gang

机构信息

Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture, Chengdu 610106, China.

National Research and Development Center for Coarse Cereal Processing, Chengdu 610106, China.

出版信息

Genes (Basel). 2017 Oct 3;8(10):255. doi: 10.3390/genes8100255.


DOI:10.3390/genes8100255
PMID:28972562
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5664105/
Abstract

Soil salinization has been a tremendous obstacle for agriculture production. The regulatory networks underlying salinity adaption in model plants have been extensively explored. However, limited understanding of the salt response mechanisms has hindered the planting and production in , an economic and health-beneficial plant mainly distributing in southwest China. In this study, we performed physiological analysis and found that salt stress of 200 mM NaCl solution significantly affected the relative water content (RWC), electrolyte leakage (EL), malondialdehyde (MDA) content, peroxidase (POD) and superoxide dismutase (SOD) activities in tartary buckwheat seedlings. Further, we conducted transcriptome comparison between control and salt treatment to identify potential regulatory components involved in salt responses. A total of 53.15 million clean reads from control and salt-treated libraries were produced via an Illumina sequencing approach. Then we de novo assembled these reads into a transcriptome dataset containing 57,921 unigenes with N50 length of 1400 bp and total length of 44.5 Mb. A total of 36,688 unigenes could find matches in public databases. GO, KEGG and KOG classification suggested the enrichment of these unigenes in 56 sub-categories, 25 KOG, and 273 pathways, respectively. Comparison of the transcriptome expression patterns between control and salt treatment unveiled 455 differentially expressed genes (DEGs). Further, we found the genes encoding for protein kinases, phosphatases, heat shock proteins (HSPs), ATP-binding cassette (ABC) transporters, glutathione S-transferases (GSTs), abiotic-related transcription factors and circadian clock might be relevant to the salinity adaption of this species. Thus, this study offers an insight into salt tolerance mechanisms, and will serve as useful genetic information for tolerant elite breeding programs in future.

摘要

土壤盐渍化一直是农业生产的巨大障碍。模式植物中盐适应性的调控网络已得到广泛研究。然而,对盐响应机制的了解有限,这阻碍了苦荞(一种主要分布在中国西南部的经济作物且对健康有益)的种植和生产。在本研究中,我们进行了生理分析,发现200 mM NaCl溶液的盐胁迫显著影响了苦荞幼苗的相对含水量(RWC)、电解质渗漏(EL)、丙二醛(MDA)含量、过氧化物酶(POD)和超氧化物歧化酶(SOD)活性。此外,我们对对照和盐处理进行了转录组比较,以鉴定参与盐响应的潜在调控成分。通过Illumina测序方法,从对照和盐处理文库中总共产生了5315万个clean reads。然后我们将这些reads进行从头组装,得到一个包含57921个单基因的转录组数据集,N50长度为1400 bp,总长度为44.5 Mb。共有36688个单基因可以在公共数据库中找到匹配项。GO、KEGG和KOG分类表明这些单基因分别在56个亚类、25个KOG和273条途径中富集。对照和盐处理之间转录组表达模式的比较揭示了455个差异表达基因(DEG)。此外,我们发现编码蛋白激酶、磷酸酶、热休克蛋白(HSP)、ATP结合盒(ABC)转运蛋白、谷胱甘肽S-转移酶(GST)、非生物相关转录因子和生物钟的基因可能与该物种的盐适应性有关。因此,本研究为耐盐机制提供了见解,并将为未来耐盐优良育种计划提供有用的遗传信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5968/5664105/455b347a0a02/genes-08-00255-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5968/5664105/902b2779108c/genes-08-00255-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5968/5664105/d5712310b322/genes-08-00255-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5968/5664105/77c1045bcacd/genes-08-00255-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5968/5664105/78c9d93eb003/genes-08-00255-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5968/5664105/0b3ccd56dfab/genes-08-00255-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5968/5664105/6f0016a201ad/genes-08-00255-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5968/5664105/fbecda9398f3/genes-08-00255-g007a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5968/5664105/f9e8331b2899/genes-08-00255-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5968/5664105/455b347a0a02/genes-08-00255-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5968/5664105/902b2779108c/genes-08-00255-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5968/5664105/d5712310b322/genes-08-00255-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5968/5664105/77c1045bcacd/genes-08-00255-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5968/5664105/78c9d93eb003/genes-08-00255-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5968/5664105/0b3ccd56dfab/genes-08-00255-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5968/5664105/6f0016a201ad/genes-08-00255-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5968/5664105/fbecda9398f3/genes-08-00255-g007a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5968/5664105/f9e8331b2899/genes-08-00255-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5968/5664105/455b347a0a02/genes-08-00255-g009.jpg

相似文献

[1]
De Novo Assembly and Analysis of Tartary Buckwheat (Fagopyrum tataricum Garetn.) Transcriptome Discloses Key Regulators Involved in Salt-Stress Response.

Genes (Basel). 2017-10-3

[2]
Transcriptomic identification of salt-related genes and de novo assembly in common buckwheat (F. esculentum).

Plant Physiol Biochem. 2018-4-4

[3]
Understanding salt tolerance mechanism using transcriptome profiling and de novo assembly of wild tomato Solanum chilense.

Sci Rep. 2020-9-28

[4]
Comparative Transcriptome and Metabolic Profiling Analysis of Buckwheat ( (L.) Gaertn.) under Salinity Stress.

Metabolites. 2019-10-14

[5]
Genome-wide transcriptomic and phylogenetic analyses reveal distinct aluminum-tolerance mechanisms in the aluminum-accumulating species buckwheat (Fagopyrum tataricum).

BMC Plant Biol. 2015-1-21

[6]
Transcriptome profiling of Fagopyrum tataricum leaves in response to lead stress.

BMC Plant Biol. 2020-2-3

[7]
Tartary Buckwheat () NAC Transcription Factors FtNAC16 Negatively Regulates of Pod Cracking and Salinity Tolerant in .

Int J Mol Sci. 2021-3-21

[8]
Deep sequencing of the transcriptome reveals distinct flavonoid metabolism features of black tartary buckwheat (Fagopyrum tataricum Garetn.).

Prog Biophys Mol Biol. 2017-3

[9]
De Novo Transcriptome Sequencing of Desert Herbaceous Achnatherum splendens (Achnatherum) Seedlings and Identification of Salt Tolerance Genes.

Genes (Basel). 2016-3-23

[10]
De novo transcriptome sequencing of Acer palmatum and comprehensive analysis of differentially expressed genes under salt stress in two contrasting genotypes.

Mol Genet Genomics. 2016-4

引用本文的文献

[1]
Transcriptional Analysis of Tissues in Tartary Buckwheat Seedlings Under IAA Stimulation.

Genes (Basel). 2024-12-27

[2]
Gene Encodes SG7 R2R3-MYB Transcription Factor from Tartary Buckwheat ( Gaertn.) to Promote Flavonol Accumulation in Transgenic .

Plants (Basel). 2024-9-27

[3]
Haplotypes of ATP-Binding Cassette in Chickpea from Kazakhstan Are Associated with Salinity Tolerance and Leaf Necrosis via Oxidative Stress.

Biomolecules. 2024-7-10

[4]
Genome-wide identification, subcellular localization, and expression analysis of the phosphatidyl ethanolamine-binding protein family reveals the candidates involved in flowering and yield regulation of Tartary buckwheat ().

PeerJ. 2024

[5]
Insights into the Transcriptomics of Crop Wild Relatives to Unravel the Salinity Stress Adaptive Mechanisms.

Int J Mol Sci. 2023-6-6

[6]
Transcriptome and metabolome analyses reveal the key genes related to grain size of big grain mutant in Tartary Buckwheat ().

Front Plant Sci. 2022-12-22

[7]
Domestication for Improving Salt Tolerance in Crops.

Front Plant Sci. 2021-9-16

[8]
Biotechnological Methods for Buckwheat Breeding.

Plants (Basel). 2021-7-28

[9]
Genome-wide analysis of gene family in Tartary buckwheat ().

PeerJ. 2021-8-11

[10]
Screening of Salt Stress Responsive Genes in (L.) Beauv. by Transcriptome Analysis.

Plants (Basel). 2020-11-9

本文引用的文献

[1]
The Tartary Buckwheat Genome Provides Insights into Rutin Biosynthesis and Abiotic Stress Tolerance.

Mol Plant. 2017-9-1

[2]
Development of a high-density linkage map and mapping of the three-pistil gene (Pis1) in wheat using GBS markers.

BMC Genomics. 2017-7-31

[3]
ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton.

Planta. 2017-5-4

[4]
Characterization and Ectopic Expression of , an AP2/EREBP Domain-Containing Transcription Factor from Coconut ( L.) Endosperm, Changes the Seeds Oil Content in Transgenic and Rice ( L.).

Front Plant Sci. 2017-1-25

[5]
Abiotic Stress Signaling and Responses in Plants.

Cell. 2016-10-6

[6]
Transcriptome analysis of smooth cordgrass (Spartina alterniflora Loisel), a monocot halophyte, reveals candidate genes involved in its adaptation to salinity.

BMC Genomics. 2016-8-19

[7]
De novo transcriptome assembly and analysis of differentially expressed genes of two barley genotypes reveal root-zone-specific responses to salt exposure.

Sci Rep. 2016-8-16

[8]
The broad roles of CBF genes: From development to abiotic stress.

Plant Signal Behav. 2016-8-2

[9]
Comparative transcriptomics of rice plants under cold, iron, and salt stresses.

Funct Integr Genomics. 2016-9

[10]
Transcriptome profiling of the salt-stress response in Triticum aestivum cv. Kharchia Local.

Sci Rep. 2016-6-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索