Suppr超能文献

DeCoDe:用于完整编码蛋白质 DNA 文库的简并密码子设计。

DeCoDe: degenerate codon design for complete protein-coding DNA libraries.

机构信息

Department of Genetics.

Department of Bioengineering.

出版信息

Bioinformatics. 2020 Jun 1;36(11):3357-3364. doi: 10.1093/bioinformatics/btaa162.

Abstract

MOTIVATION

High-throughput protein screening is a critical technique for dissecting and designing protein function. Libraries for these assays can be created through a number of means, including targeted or random mutagenesis of a template protein sequence or direct DNA synthesis. However, mutagenic library construction methods often yield vastly more nonfunctional than functional variants and, despite advances in large-scale DNA synthesis, individual synthesis of each desired DNA template is often prohibitively expensive. Consequently, many protein-screening libraries rely on the use of degenerate codons (DCs), mixtures of DNA bases incorporated at specific positions during DNA synthesis, to generate highly diverse protein-variant pools from only a few low-cost synthesis reactions. However, selecting DCs for sets of sequences that covary at multiple positions dramatically increases the difficulty of designing a DC library and leads to the creation of many undesired variants that can quickly outstrip screening capacity.

RESULTS

We introduce a novel algorithm for total DC library optimization, degenerate codon design (DeCoDe), based on integer linear programming. DeCoDe significantly outperforms state-of-the-art DC optimization algorithms and scales well to more than a hundred proteins sharing complex patterns of covariation (e.g. the lab-derived avGFP lineage). Moreover, DeCoDe is, to our knowledge, the first DC design algorithm with the capability to encode mixed-length protein libraries. We anticipate DeCoDe to be broadly useful for a variety of library generation problems, ranging from protein engineering attempts that leverage mutual information to the reconstruction of ancestral protein states.

AVAILABILITY AND IMPLEMENTATION

github.com/OrensteinLab/DeCoDe.

CONTACT

yaronore@bgu.ac.il.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

高通量蛋白质筛选是剖析和设计蛋白质功能的关键技术。这些测定的文库可以通过多种手段创建,包括模板蛋白序列的靶向或随机诱变或直接 DNA 合成。然而,诱变文库构建方法通常产生的无功能变体比功能变体多得多,尽管在大规模 DNA 合成方面取得了进展,但单独合成每个所需的 DNA 模板通常过于昂贵。因此,许多蛋白质筛选文库依赖于使用简并密码子(DC),即在 DNA 合成过程中特定位置掺入的 DNA 碱基混合物,仅从少数低成本合成反应中生成高度多样化的蛋白质变体池。然而,为在多个位置上共变的序列集选择 DC 极大地增加了设计 DC 文库的难度,并导致产生了许多不需要的变体,这些变体很快就会超过筛选能力。

结果

我们介绍了一种基于整数线性规划的全新总 DC 文库优化算法,即简并密码子设计(DeCoDe)。DeCoDe 明显优于最先进的 DC 优化算法,并且可以很好地扩展到具有复杂共变模式的一百多个蛋白质(例如,实验室衍生的 avGFP 谱系)。此外,据我们所知,DeCoDe 是第一个具有编码混合长度蛋白质文库能力的 DC 设计算法。我们预计 DeCoDe 将广泛用于各种文库生成问题,从利用互信息的蛋白质工程尝试到重建祖先蛋白质状态。

可用性和实施

github.com/OrensteinLab/DeCoDe。

联系方式

yaronore@bgu.ac.il

补充信息

补充数据可在 Bioinformatics 在线获得。

相似文献

4
Automated design of degenerate codon libraries.简并密码子文库的自动化设计。
Protein Eng Des Sel. 2005 Dec;18(12):559-61. doi: 10.1093/protein/gzi061. Epub 2005 Oct 20.
5
Synthesis cost-optimal targeted mutant protein libraries.合成成本最优的靶向突变蛋白文库。
Comput Biol Chem. 2024 Jun;110:108068. doi: 10.1016/j.compbiolchem.2024.108068. Epub 2024 Apr 18.
6
Optimization of combinatorial mutagenesis.组合诱变的优化
J Comput Biol. 2011 Nov;18(11):1743-56. doi: 10.1089/cmb.2011.0152. Epub 2011 Sep 16.
9
Codon compression algorithms for saturation mutagenesis.用于饱和诱变的密码子压缩算法。
ACS Synth Biol. 2015 May 15;4(5):604-14. doi: 10.1021/sb500282v. Epub 2014 Oct 30.

本文引用的文献

1
Machine learning-assisted directed protein evolution with combinatorial libraries.机器学习辅助的组合文库定向蛋白质进化。
Proc Natl Acad Sci U S A. 2019 Apr 30;116(18):8852-8858. doi: 10.1073/pnas.1901979116. Epub 2019 Apr 12.
5
7
Evolutionary trend toward kinetic stability in the folding trajectory of RNases H.核糖核酸酶H折叠轨迹中向动力学稳定性的进化趋势。
Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):13045-13050. doi: 10.1073/pnas.1611781113. Epub 2016 Oct 31.
9
Local fitness landscape of the green fluorescent protein.绿色荧光蛋白的局部适应度景观
Nature. 2016 May 19;533(7603):397-401. doi: 10.1038/nature17995. Epub 2016 May 11.
10
Dissecting enzyme function with microfluidic-based deep mutational scanning.利用基于微流控的深度突变扫描剖析酶功能。
Proc Natl Acad Sci U S A. 2015 Jun 9;112(23):7159-64. doi: 10.1073/pnas.1422285112. Epub 2015 May 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验