Suppr超能文献

一种基于纺织增强硅胶的仿生鱼鳍机器人。

A Biomimetic Fish Fin-Like Robot Based on Textile Reinforced Silicone.

作者信息

Pfeil Sascha, Katzer Konrad, Kanan Anas, Mersch Johannes, Zimmermann Martina, Kaliske Michael, Gerlach Gerald

机构信息

Institute of Solid State Electronics, Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01069 Dresden, Germany.

Fraunhofer Institute for Material and Beam Technology IWS, 01277 Dresden, Germany.

出版信息

Micromachines (Basel). 2020 Mar 12;11(3):298. doi: 10.3390/mi11030298.

Abstract

The concept of merging pre-processed textile materials with tailored mechanical properties into soft matrices is so far rarely used in the field of soft robotics. The herein presented work takes the advantages of textile materials in elastomer matrices to another level by integrating a material with highly anisotropic bending properties. A pre-fabricated textile material consisting of oriented carbon fibers is used as a stiff component to precisely control the mechanical behavior of the robotic setup. The presented robotic concept uses a multi-layer stack for the robot's body and dielectric elastomer actuators (DEAs) on both outer sides of it. The bending motion of the whole structure results from the combination of its mechanically adjusted properties and the force generation of the DEAs. We present an antagonistic switching setup for the DEAs that leads to deflections to both sides of the robot, following a biomimetic principle. To investigate the bending behavior of the robot, we show a simulation model utilizing electromechanical coupling to estimate the quasi-static deflection of the structure. Based on this model, a statement about the bending behavior of the structure in general is made, leading to an expected maximum deflection of 10 mm at the end of the fin for a static activation. Furthermore, we present an electromechanical network model to evaluate the frequency dependent behavior of the robot's movement, predicting a resonance frequency of 6.385 Hz for the dynamic switching case. Both models in combination lead to a prediction about the acting behavior of the robot. These theoretical predictions are underpinned by dynamic performance measurements in air for different switching frequencies of the DEAs, leading to a maximum deflection of 9.3 mm located at the end of the actuators. The herein presented work places special focus on the mechanical resonance frequency of the robotic setup with regard to maximum deflections.

摘要

将具有定制机械性能的预处理纺织材料融入软质基体的概念,目前在软机器人领域很少被使用。本文所展示的工作通过整合一种具有高度各向异性弯曲特性的材料,将纺织材料在弹性体基体中的优势提升到了一个新的水平。一种由定向碳纤维组成的预制纺织材料被用作刚性部件,以精确控制机器人装置的力学行为。所提出的机器人概念使用多层堆叠结构作为机器人的主体,并在其两侧均使用介电弹性体致动器(DEA)。整个结构的弯曲运动源于其机械调节特性与DEA产生的力的共同作用。我们为DEA提出了一种对抗性切换设置,该设置遵循仿生原理,可使机器人向两侧偏转。为了研究机器人的弯曲行为,我们展示了一个利用机电耦合来估计结构准静态挠度的仿真模型。基于该模型,对结构的弯曲行为进行了一般性描述,得出在静态激活时鳍片末端预期最大挠度为10毫米的结论。此外,我们还提出了一个机电网络模型来评估机器人运动的频率相关行为,预测动态切换情况下的共振频率为6.385赫兹。这两个模型相结合,可对机器人的行为进行预测。这些理论预测通过在空气中对DEA不同切换频率下的动态性能测量得到了验证,测量结果显示致动器末端的最大挠度为9.3毫米。本文所展示的工作特别关注机器人装置在最大挠度方面的机械共振频率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验