Suppr超能文献

低温下通过 Lee-Goldburg 自旋锁定和相位调制的磁共振成像中的切片选择。

Slice selection in low-temperature, DNP-enhanced magnetic resonance imaging by Lee-Goldburg spin-locking and phase modulation.

机构信息

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States.

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States.

出版信息

J Magn Reson. 2020 Apr;313:106715. doi: 10.1016/j.jmr.2020.106715. Epub 2020 Mar 9.

Abstract

Large enhancements in nuclear magnetic resonance (NMR) signals provided by dynamic nuclear polarization (DNP) at low temperatures have the potential to enable inductively-detected H magnetic resonance imaging (MRI) with isotropic spatial resolution on the order of one micron, especially when low temperatures and DNP are combined with microcoils, three-dimensional (3D) phase encoding of image information, pulsed spin locking during NMR signal detection, and homonuclear dipolar decoupling by Lee-Goldburg (LG) irradiation or similar methods. However, the relatively slow build-up of nuclear magnetization under DNP leads to very long acquisition times for high-resolution 3D images unless the sample volume or field of view (FOV) is restricted. We have therefore developed a method for slice selection in low-temperature, DNP-enhanced MRI that limits the FOV to about 50 μm in one or more dimensions. This method uses small-amplitude phase modulation of LG irradiation in the presence of a strong magnetic field gradient to invert spin-locked H magnetization in the selected slice. Experimental results are reported, including effects of radio-frequency field inhomogeneity, variations in the amplitude of phase modulation, and shaped phase modulation.

摘要

低温下通过动态核极化(DNP)提供的核磁共振(NMR)信号的大幅增强,有可能在低场下实现各向同性空间分辨率达到一微米量级的感应检测 H 磁共振成像(MRI),尤其是当低温、DNP 与微线圈、图像信息的三维(3D)相位编码、NMR 信号检测过程中的脉冲自旋锁定,以及 Lee-Goldburg(LG)辐照或类似方法的同核偶极去耦结合使用时。然而,DNP 下核磁化强度的缓慢建立导致高分辨率 3D 图像的采集时间非常长,除非限制样品体积或视场(FOV)。因此,我们开发了一种用于低温、DNP 增强 MRI 的切片选择方法,该方法将 FOV 限制在一维或多维的约 50 μm 左右。该方法在强磁场梯度存在下使用 LG 辐照的小幅度相位调制来反转所选切片中被自旋锁定的 H 磁化强度。报告了实验结果,包括射频场不均匀性、相位调制幅度变化和相位调制的形状的影响。

相似文献

1
2
Temperature-Dependent Nuclear Spin Relaxation Due to Paramagnetic Dopants Below 30 K: Relevance to DNP-Enhanced Magnetic Resonance Imaging.
J Phys Chem B. 2018 Dec 13;122(49):11731-11742. doi: 10.1021/acs.jpcb.8b07958. Epub 2018 Oct 16.
3
Prospects for sub-micron solid state nuclear magnetic resonance imaging with low-temperature dynamic nuclear polarization.
Phys Chem Chem Phys. 2010 Jun 14;12(22):5779-85. doi: 10.1039/c0cp00157k. Epub 2010 May 11.
4
Micron-scale magnetic resonance imaging of both liquids and solids.
J Magn Reson. 2015 Nov;260:1-9. doi: 10.1016/j.jmr.2015.09.001. Epub 2015 Sep 8.
5
Enhanced spatial resolution in magnetic resonance imaging by dynamic nuclear polarization at 5 K.
Proc Natl Acad Sci U S A. 2022 May 31;119(22):e2201644119. doi: 10.1073/pnas.2201644119. Epub 2022 May 23.
8
Low-temperature magnetic resonance imaging with 2.8 μm isotropic resolution.
J Magn Reson. 2018 Feb;287:47-55. doi: 10.1016/j.jmr.2017.12.016. Epub 2017 Dec 20.
9
Micron-scale magnetic resonance imaging based on low temperatures and dynamic nuclear polarization.
Prog Nucl Magn Reson Spectrosc. 2023 Nov-Dec;138-139:136-149. doi: 10.1016/j.pnmrs.2023.10.001. Epub 2023 Oct 17.
10
NMR spin locking of proton magnetization under a frequency-switched Lee-Goldburg pulse sequence.
J Magn Reson. 2002 Jan;154(1):130-5. doi: 10.1006/jmre.2001.2468.

引用本文的文献

1
Electron-spin decoherence in trityl radicals in the absence and presence of microwave irradiation.
Magn Reson (Gott). 2025 Jan 22;6(1):15-32. doi: 10.5194/mr-6-15-2025. eCollection 2025.
2
Micron-scale magnetic resonance imaging based on low temperatures and dynamic nuclear polarization.
Prog Nucl Magn Reson Spectrosc. 2023 Nov-Dec;138-139:136-149. doi: 10.1016/j.pnmrs.2023.10.001. Epub 2023 Oct 17.
3
Distance measurement between trityl radicals by pulse dressed electron paramagnetic resonance with phase modulation.
Magn Reson (Gott). 2020 May 15;1(1):75-87. doi: 10.5194/mr-1-75-2020. eCollection 2020.
5
Enhanced spatial resolution in magnetic resonance imaging by dynamic nuclear polarization at 5 K.
Proc Natl Acad Sci U S A. 2022 May 31;119(22):e2201644119. doi: 10.1073/pnas.2201644119. Epub 2022 May 23.

本文引用的文献

2
Temperature-Dependent Nuclear Spin Relaxation Due to Paramagnetic Dopants Below 30 K: Relevance to DNP-Enhanced Magnetic Resonance Imaging.
J Phys Chem B. 2018 Dec 13;122(49):11731-11742. doi: 10.1021/acs.jpcb.8b07958. Epub 2018 Oct 16.
3
Low-temperature magnetic resonance imaging with 2.8 μm isotropic resolution.
J Magn Reson. 2018 Feb;287:47-55. doi: 10.1016/j.jmr.2017.12.016. Epub 2017 Dec 20.
4
Micron-scale magnetic resonance imaging of both liquids and solids.
J Magn Reson. 2015 Nov;260:1-9. doi: 10.1016/j.jmr.2015.09.001. Epub 2015 Sep 8.
5
Effect of electron spin dynamics on solid-state dynamic nuclear polarization performance.
Phys Chem Chem Phys. 2014 Sep 21;16(35):18694-706. doi: 10.1039/c4cp02013h.
6
Dynamic nuclear polarization-enhanced ¹H-¹³C double resonance NMR in static samples below 20 K.
J Magn Reson. 2012 Aug;221:32-40. doi: 10.1016/j.jmr.2012.05.008. Epub 2012 May 27.
8
Prospects for sub-micron solid state nuclear magnetic resonance imaging with low-temperature dynamic nuclear polarization.
Phys Chem Chem Phys. 2010 Jun 14;12(22):5779-85. doi: 10.1039/c0cp00157k. Epub 2010 May 11.
9
Low-temperature dynamic nuclear polarization at 9.4 T with a 30 mW microwave source.
J Magn Reson. 2010 Jun;204(2):303-13. doi: 10.1016/j.jmr.2010.03.016. Epub 2010 Mar 23.
10
Sparse MRI: The application of compressed sensing for rapid MR imaging.
Magn Reson Med. 2007 Dec;58(6):1182-95. doi: 10.1002/mrm.21391.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验