Jeschke Gunnar, Wili Nino, Wu Yufei, Kuzin Sergei, Karas Hugo, Hintz Henrik, Godt Adelheid
Department of Chemistry and Applied Biosciences, Institute of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, Aarhus C, 8000, Denmark.
Magn Reson (Gott). 2025 Jan 22;6(1):15-32. doi: 10.5194/mr-6-15-2025. eCollection 2025.
Trityl radicals feature prominently as polarizing agents in solid-state dynamic nuclear polarization experiments and as spin labels in distance distribution measurements by pulsed dipolar EPR spectroscopy techniques. Electron-spin coherence lifetime is a main determinant of performance in these applications. We show that protons in these radicals contribute substantially to decoherence, although the radicals were designed with the aim of reducing proton hyperfine interaction. By spin dynamics simulations, we can trace back the nearly complete Hahn echo decay for a Finland trityl radical variant within 7 s to the contribution from tunnelling of the 36 methyl protons in the radical core. This contribution, as well as the contribution of methylene protons in OX063 and OX071 trityl radicals, to Hahn echo decay can be predicted rather well by the previously introduced analytical pair product approximation. In contrast, predicting decoherence of electron spins dressed by a microwave field proves to be a hard problem where correlations between more than two protons contribute substantially. Cluster correlation expansion (CCE) becomes borderline numerically unstable already at order 3 at times comparable to the decoherence time and cannot be applied at order 4. We introduce partial CCE that alleviates this problem and reduces computational effort at the expense of treating only part of the correlations at a particular order. Nevertheless, dressed-spin decoherence simulations for systems with more than 100 protons remain out of reach, whereas they provide only semi-quantitative predictions for 24 to 48 protons. Our experimental and simulation results indicate that solid-state magnetic resonance experiments with trityl radicals will profit from perdeuteration of the compounds.
三苯甲基自由基在固态动态核极化实验中作为极化剂以及在脉冲偶极电子顺磁共振光谱技术的距离分布测量中作为自旋标记发挥着重要作用。电子自旋相干寿命是这些应用中性能的主要决定因素。我们表明,尽管这些自由基的设计目的是减少质子超精细相互作用,但其中的质子对退相干有很大贡献。通过自旋动力学模拟,我们可以将芬兰三苯甲基自由基变体在7秒内几乎完全的哈恩回波衰减追溯到自由基核心中36个甲基质子隧穿的贡献。通过先前引入的解析对乘积近似,可以相当准确地预测这种贡献以及OX063和OX071三苯甲基自由基中亚甲基质子对哈恩回波衰减的贡献。相比之下,预测由微波场修饰的电子自旋的退相干是一个难题,其中两个以上质子之间的相关性起了很大作用。团簇相关展开(CCE)在与退相干时间相当的时间下,在三阶时就已经在数值上接近不稳定,并且在四阶时无法应用。我们引入了部分CCE,它缓解了这个问题,并以仅处理特定阶次的部分相关性为代价减少了计算量。然而,对于具有100多个质子的系统,修饰自旋退相干模拟仍然无法实现,而对于24到48个质子,它们只能提供半定量预测。我们的实验和模拟结果表明,使用三苯甲基自由基的固态磁共振实验将受益于化合物的全氘代。