Suppr超能文献

通过主动学习导向的粗粒度分子模拟发现自组装π共轭肽

Discovery of Self-Assembling π-Conjugated Peptides by Active Learning-Directed Coarse-Grained Molecular Simulation.

作者信息

Shmilovich Kirill, Mansbach Rachael A, Sidky Hythem, Dunne Olivia E, Panda Sayak Subhra, Tovar John D, Ferguson Andrew L

机构信息

Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States.

Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.

出版信息

J Phys Chem B. 2020 May 14;124(19):3873-3891. doi: 10.1021/acs.jpcb.0c00708. Epub 2020 Mar 30.

Abstract

Electronically active organic molecules have demonstrated great promise as novel soft materials for energy harvesting and transport. Self-assembled nanoaggregates formed from π-conjugated oligopeptides composed of an aromatic core flanked by oligopeptide wings offer emergent optoelectronic properties within a water-soluble and biocompatible substrate. Nanoaggregate properties can be controlled by tuning core chemistry and peptide composition, but the sequence-structure-function relations remain poorly characterized. In this work, we employ coarse-grained molecular dynamics simulations within an active learning protocol employing deep representational learning and Bayesian optimization to efficiently identify molecules capable of assembling pseudo-1D nanoaggregates with good stacking of the electronically active π-cores. We consider the DXXX-OPV3-XXXD oligopeptide family, where D is an Asp residue and OPV3 is an oligophenylenevinylene oligomer (1,4-distyrylbenzene), to identify the top performing XXX tripeptides within all 20 = 8000 possible sequences. By direct simulation of only 2.3% of this space, we identify molecules predicted to exhibit superior assembly relative to those reported in prior work. Spectral clustering of the top candidates reveals new design rules governing assembly. This work establishes new understanding of DXXX-OPV3-XXXD assembly, identifies promising new candidates for experimental testing, and presents a computational design platform that can be generically extended to other peptide-based and peptide-like systems.

摘要

电子活性有机分子已展现出作为用于能量收集和传输的新型软材料的巨大潜力。由π共轭寡肽形成的自组装纳米聚集体,该寡肽由芳香核两侧连接寡肽侧翼组成,在水溶性和生物相容性基质中展现出新兴的光电特性。纳米聚集体的性质可通过调节核心化学和肽组成来控制,但序列 - 结构 - 功能关系仍未得到很好的表征。在这项工作中,我们在主动学习协议中采用粗粒度分子动力学模拟,该协议采用深度表征学习和贝叶斯优化,以有效地识别能够组装具有良好电子活性π核堆叠的准一维纳米聚集体的分子。我们考虑DXXX - OPV3 - XXXD寡肽家族,其中D是天冬氨酸残基,OPV3是寡苯撑乙烯寡聚物(1,4 - 二苯乙烯基苯),以在所有20³ = 8000种可能序列中识别表现最佳的XXX三肽。通过仅对该空间的2.3%进行直接模拟,我们识别出预测表现出比先前工作中报道的分子更优异组装的分子。对顶级候选物的光谱聚类揭示了控制组装的新设计规则。这项工作建立了对DXXX - OPV3 - XXXD组装的新理解,识别出有前景的新候选物用于实验测试,并提出了一个可普遍扩展到其他基于肽和类肽系统的计算设计平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验