Piskorz Tomasz K, Perez-Chirinos Laura, Qiao Baofu, Sasselli Ivan R
Department of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K.
Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain.
ACS Omega. 2024 Jul 8;9(29):31254-31273. doi: 10.1021/acsomega.4c02628. eCollection 2024 Jul 23.
Supramolecular peptide assemblies (SPAs) hold promise as materials for nanotechnology and biomedicine. Although their investigation often entails adapting experimental techniques from their protein counterparts, SPAs are fundamentally distinct from proteins, posing unique challenges for their study. Computational methods have emerged as indispensable tools for gaining deeper insights into SPA structures at the molecular level, surpassing the limitations of experimental techniques, and as screening tools to reduce the experimental search space. However, computational studies have grappled with issues stemming from the absence of standardized procedures and relevant crystal structures. Fundamental disparities between SPAs and protein simulations, such as the absence of experimentally validated initial structures and the importance of the simulation size, number of molecules, and concentration, have compounded these challenges. Understanding the roles of various parameters and the capabilities of different models and simulation setups remains an ongoing endeavor. In this review, we aim to provide readers with guidance on the parameters to consider when conducting SPA simulations, elucidating their potential impact on outcomes and validity.
超分子肽组装体(SPAs)有望成为纳米技术和生物医学领域的材料。尽管对它们的研究通常需要采用源自蛋白质研究的实验技术,但SPAs在本质上与蛋白质不同,这给它们的研究带来了独特的挑战。计算方法已成为不可或缺的工具,用于在分子水平上更深入地了解SPA结构,突破实验技术的局限性,并作为筛选工具来缩小实验搜索空间。然而,计算研究一直受到缺乏标准化程序和相关晶体结构的困扰。SPAs与蛋白质模拟之间的根本差异,如缺乏经过实验验证的初始结构以及模拟大小、分子数量和浓度的重要性,加剧了这些挑战。了解各种参数的作用以及不同模型和模拟设置的能力仍然是一项持续的工作。在这篇综述中,我们旨在为读者提供有关进行SPA模拟时应考虑的参数的指导,阐明它们对结果和有效性的潜在影响。