Suppr超能文献

纤维酸类药物遗传学:超越基因组。

Fibrate pharmacogenomics: expanding past the genome.

机构信息

Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Department of Health & Human Services, Research Triangle Park, NC 27709, USA.

出版信息

Pharmacogenomics. 2020 Mar;21(4):293-306. doi: 10.2217/pgs-2019-0140. Epub 2020 Mar 17.

Abstract

Fibrates are a medication class prescribed for decades as 'broad-spectrum' lipid-modifying agents used to lower blood triglyceride levels and raise high-density lipoprotein cholesterol levels. Such lipid changes are associated with a decrease in cardiovascular disease, and fibrates are commonly used to reduce risk of dangerous cardiovascular outcomes. As with most drugs, it is well established that response to fibrate treatment is variable, and this variation is heritable. This has motivated the investigation of pharmacogenomic determinants of response, and multiple studies have discovered a number of genes associated with fibrate response. Similar to other complex traits, the interrogation of single nucleotide polymorphisms using candidate gene or genome-wide approaches has not revealed a substantial portion of response variation. However, recent innovations in technological platforms and advances in statistical methodologies are revolutionizing the use and integration of other 'omes' in pharmacogenomics studies. Here, we detail successes, challenges, and recent advances in fibrate pharmacogenomics.

摘要

贝特类药物是一种被广泛使用的降脂药物,已被临床应用数十年,用于降低血液中的甘油三酯水平,提高高密度脂蛋白胆固醇水平。这些脂质变化与心血管疾病风险降低有关,贝特类药物常用于降低危险的心血管事件风险。与大多数药物一样,人们早已认识到,贝特类药物的治疗反应存在个体差异,且这种差异具有遗传性。这促使人们研究了药物反应的药物基因组学决定因素,多项研究发现了一些与贝特类药物反应相关的基因。与其他复杂特征一样,使用候选基因或全基因组方法对单核苷酸多态性的检测并未揭示出反应变异的很大一部分。然而,技术平台的最新创新和统计方法学的进步正在彻底改变药物基因组学研究中其他“组学”的使用和整合。在这里,我们详细介绍了贝特类药物药物基因组学的成功、挑战和最新进展。

相似文献

1
Fibrate pharmacogenomics: expanding past the genome.
Pharmacogenomics. 2020 Mar;21(4):293-306. doi: 10.2217/pgs-2019-0140. Epub 2020 Mar 17.
2
Hypertriglyceridemia Therapy: Past, Present and Future Perspectives.
Int J Mol Sci. 2024 Sep 8;25(17):9727. doi: 10.3390/ijms25179727.
3
Association between triglyceride and high-density lipoprotein cholesterol change following fibrate therapy.
Diabetes Metab Syndr. 2014 Oct-Dec;8(4):212-5. doi: 10.1016/j.dsx.2014.09.004. Epub 2014 Oct 6.
4
Fibrates and niacin: is there a place for them in clinical practice?
Expert Opin Pharmacother. 2014 Dec;15(18):2673-80. doi: 10.1517/14656566.2014.972365. Epub 2014 Oct 16.
5
Use of fibrates in clinical practice: Queensland Lipid Group consensus recommendations.
Int J Evid Based Healthc. 2012 Sep;10(3):181-90. doi: 10.1111/j.1744-1609.2012.00275.x.
6
Prevention of cardiovascular disease utilizing fibrates--a pooled meta-analysis.
Am J Ther. 2010 Nov-Dec;17(6):e182-8. doi: 10.1097/MJT.0b013e3181dcf72b.
7
[The PROMINENT trial: swan song of the fibrates].
Ned Tijdschr Geneeskd. 2023 Apr 5;167:D7528.
8
The role of fibrate treatment in dyslipidemia: an overview.
Curr Pharm Des. 2013;19(17):3124-31. doi: 10.2174/1381612811319170020.
10
Fibrates and the risk of cardiovascular outcomes in chronic kidney disease patients.
Nephrol Dial Transplant. 2024 May 31;39(6):1016-1022. doi: 10.1093/ndt/gfad248.

引用本文的文献

1
Bayesian gene set benchmark dose estimation for "omic" responses.
Bioinformatics. 2024 Dec 26;41(1). doi: 10.1093/bioinformatics/btaf008.
3
Pharmacological Utility of PPAR Modulation for Angiogenesis in Cardiovascular Disease.
Int J Mol Sci. 2023 Jan 25;24(3):2345. doi: 10.3390/ijms24032345.
4
Genophenotypic Factors and Pharmacogenomics in Adverse Drug Reactions.
Int J Mol Sci. 2021 Dec 10;22(24):13302. doi: 10.3390/ijms222413302.

本文引用的文献

1
Cardiovascular Risk Reduction with Icosapent Ethyl. Reply.
N Engl J Med. 2019 Apr 25;380(17):1678. doi: 10.1056/NEJMc1902165.
2
Impact of primary carbon sources on microbiome shaping and biotransformation of pharmaceuticals and personal care products.
Biodegradation. 2019 Jun;30(2-3):127-145. doi: 10.1007/s10532-019-09871-0. Epub 2019 Feb 28.
4
Going to the negative: genomics for optimized medical prescription.
Nat Rev Genet. 2019 Jan;20(1):1-2. doi: 10.1038/s41576-018-0061-7.
5
Genome-wide linkage scan for loci influencing plasma triglyceride levels.
BMC Proc. 2018 Sep 17;12(Suppl 9):52. doi: 10.1186/s12919-018-0137-6. eCollection 2018.
6
Reliability of genomic predictions of complex human phenotypes.
BMC Proc. 2018 Sep 17;12(Suppl 9):51. doi: 10.1186/s12919-018-0138-5. eCollection 2018.
7
Identifying fenofibrate responsive CpG sites.
BMC Proc. 2018 Sep 17;12(Suppl 9):43. doi: 10.1186/s12919-018-0148-3. eCollection 2018.
8
A Bayesian mixed modeling approach for estimating heritability.
BMC Proc. 2018 Sep 17;12(Suppl 9):31. doi: 10.1186/s12919-018-0131-z. eCollection 2018.
9
Network analysis of drug effect on triglyceride-associated DNA methylation.
BMC Proc. 2018 Sep 17;12(Suppl 9):27. doi: 10.1186/s12919-018-0130-0. eCollection 2018.
10
Modeling methylation data as an additional genetic variance component.
BMC Proc. 2018 Sep 17;12(Suppl 9):29. doi: 10.1186/s12919-018-0128-7. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验