Suppr超能文献

基于象脚芋淀粉-水胶体的可食用包装薄膜的研制与表征:物理、光学、热学及阻隔性能

Development and characterization of elephant foot yam starch-hydrocolloids based edible packaging film: physical, optical, thermal and barrier properties.

作者信息

Nagar Mohit, Sharanagat Vijay Singh, Kumar Yogesh, Singh Lochan

机构信息

1Department of Food Engineering, NIFTEM, Sonipat, Haryana India.

2Department of Agriculture and Environmental Science, NIFTEM, Sonipat, Haryana India.

出版信息

J Food Sci Technol. 2020 Apr;57(4):1331-1341. doi: 10.1007/s13197-019-04167-w. Epub 2019 Nov 13.

Abstract

The study aimed at the development of elephant foot yam starch (EFYS) based edible film through blending of Xanthan (XG) and agar-agar (AA). Film thickness and density increased with increase in concentration of hydrocolloids and the respective highest value 0.199 mm and 2.02 g/cm were found for the film possessing 2% AA. The film barrier properties varied with hydrocolloids and the lowest value of water vapour transmission rate (1494.54 g/m) and oxygen transmission rate (0.020 cm/m) was observed for the film with 1% XG and 1.5% AA, respectively. Mechanical and thermal properties also improved upon addition of hydrocolloid. Highest tensile strength (20.14 MPa) and glass transition temperature (150.6 °C) was observed for film containing 2% AA. Fourier transform infrared spectroscopy demonstrated the presence of -OH, C-H, and C=O groups. The change in crystallinity was observed through peak in X-ray diffraction analysis, which increased with increase in the hydrocolloids' concentration.

摘要

该研究旨在通过将黄原胶(XG)和琼脂(AA)混合来开发基于象脚芋淀粉(EFYS)的可食用薄膜。薄膜厚度和密度随着水胶体浓度的增加而增加,对于含有2% AA的薄膜,分别发现其最高值为0.199毫米和2.02克/立方厘米。薄膜的阻隔性能随水胶体而变化,对于含有1% XG和1.5% AA的薄膜,分别观察到最低的水蒸气透过率(1494.54克/平方米)和氧气透过率(0.020立方厘米/平方米)。添加水胶体后,机械性能和热性能也得到改善。对于含有2% AA的薄膜,观察到最高拉伸强度(20.14兆帕)和玻璃化转变温度(150.6℃)。傅里叶变换红外光谱表明存在-OH、C-H和C=O基团。通过X射线衍射分析中的峰观察到结晶度的变化,其随着水胶体浓度的增加而增加。

相似文献

3
Functional and thermal behaviors of heat-moisture treated elephant foot yam starch.
Int J Biol Macromol. 2019 Sep 15;137:783-789. doi: 10.1016/j.ijbiomac.2019.06.228. Epub 2019 Jun 28.
4
Development and characterization of dual-modified yam () starch-based films.
Heliyon. 2021 Apr 1;7(4):e06644. doi: 10.1016/j.heliyon.2021.e06644. eCollection 2021 Apr.
6
Physico-functional and structural characterization of ultrasonic-assisted chemically modified elephant foot yam starch.
Int J Biol Macromol. 2020 Dec 1;164:1061-1069. doi: 10.1016/j.ijbiomac.2020.07.185. Epub 2020 Jul 22.
7
Structural, Thermal, Physical, Mechanical, and Barrier Properties of Chitosan Films with the Addition of Xanthan Gum.
J Food Sci. 2017 Mar;82(3):698-705. doi: 10.1111/1750-3841.13653. Epub 2017 Feb 20.
8
Mechanical and barrier properties of maize starch-gelatin composite films: effects of amylose content.
J Sci Food Agric. 2017 Aug;97(11):3613-3622. doi: 10.1002/jsfa.8220. Epub 2017 Feb 22.
9
Characterization of starch, agar and maltodextrin blends for controlled dissolution of edible films.
Int J Biol Macromol. 2020 Aug 1;156:80-93. doi: 10.1016/j.ijbiomac.2020.04.056. Epub 2020 Apr 12.
10
Blends of gellan gum/xanthan gum/zinc oxide based nanocomposites for packaging application: Rheological and antimicrobial properties.
Int J Biol Macromol. 2020 Apr 1;148:1182-1189. doi: 10.1016/j.ijbiomac.2019.11.155. Epub 2019 Nov 21.

引用本文的文献

1
Insights into the preparation, properties, application in food of polysaccharide-based edible films and coatings: An updated overview.
Curr Res Food Sci. 2025 Jun 20;11:101123. doi: 10.1016/j.crfs.2025.101123. eCollection 2025.
6
Thermo Compression of Thermoplastic Agar-Xanthan Gum-Carboxymethyl Cellulose Blend.
Polymers (Basel). 2021 Oct 10;13(20):3472. doi: 10.3390/polym13203472.
7
Functional properties of starch-chitosan blend bionanocomposite films for food packaging: the influence of amylose-amylopectin ratios.
J Food Sci Technol. 2021 Sep;58(9):3368-3378. doi: 10.1007/s13197-020-04908-2. Epub 2020 Nov 23.

本文引用的文献

2
Modelling the effect of guar gum on physical, optical, barrier and mechanical properties of potato starch based composite film.
Carbohydr Polym. 2018 Nov 15;200:498-507. doi: 10.1016/j.carbpol.2018.08.028. Epub 2018 Aug 12.
3
Development and characterization of agar-based edible films reinforced with nano-bacterial cellulose.
Int J Biol Macromol. 2018 Oct 15;118(Pt A):722-730. doi: 10.1016/j.ijbiomac.2018.06.089. Epub 2018 Jun 23.
4
Water Sorption Isotherm of Pea Starch Edible Films and Prediction Models.
Foods. 2015 Dec 24;5(1):1. doi: 10.3390/foods5010001.
5
Mango kernel starch-gum composite films: Physical, mechanical and barrier properties.
Int J Biol Macromol. 2017 May;98:869-876. doi: 10.1016/j.ijbiomac.2017.02.054. Epub 2017 Feb 16.
6
Development of non-water soluble, ductile mung bean starch based edible film with oxygen barrier and heat sealability.
Carbohydr Polym. 2017 Feb 10;157:748-756. doi: 10.1016/j.carbpol.2016.09.007. Epub 2016 Oct 13.
7
Gelatin/potato starch edible biocomposite films: Correlation between morphology and physical properties.
Carbohydr Polym. 2017 Feb 10;157:1162-1172. doi: 10.1016/j.carbpol.2016.10.079. Epub 2016 Oct 29.
8
Development of chitosan based edible films: process optimization using response surface methodology.
J Food Sci Technol. 2015 May;52(5):2530-43. doi: 10.1007/s13197-014-1318-6. Epub 2014 Apr 13.
9
Mechanical and barrier properties of guar gum based nano-composite films.
Carbohydr Polym. 2015 Jun 25;124:77-84. doi: 10.1016/j.carbpol.2015.02.004. Epub 2015 Feb 12.
10
Development of thermoplastic starch blown film by incorporating plasticized chitosan.
Carbohydr Polym. 2015 Jan 22;115:575-81. doi: 10.1016/j.carbpol.2014.09.005. Epub 2014 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验