Suppr超能文献

在太古宙海洋模拟物中,氧化还原敏感痕量金属与微生物群落之间的关联。

Associations between redox-sensitive trace metals and microbial communities in a Proterozoic ocean analogue.

机构信息

Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA.

Department of Earth and Planetary Sciences, McGill University, Montreal, QC, Canada.

出版信息

Geobiology. 2020 Jul;18(4):462-475. doi: 10.1111/gbi.12388. Epub 2020 Mar 17.

Abstract

Constraints on Precambrian ocean chemistry are dependent upon sediment geochemistry. However, diagenesis and metamorphism can destroy primary biosignatures, making it difficult to consider biology when interpreting geochemical data. Modern analogues for ancient ecosystems can be useful tools for identifying how sediment geochemistry records an active biosphere. The Middle Island Sinkhole (MIS) in Lake Huron is an analogue for shallow Proterozoic waters due to its low oxygen water chemistry and microbial communities that exhibit diverse metabolic functions at the sediment-water interface. This study uses sediment trace metal contents and microbial abundances in MIS sediments and an oxygenated Lake Huron control site (LH) to infer mechanisms for trace metal burial. The adsorption of trace metals to Mn-oxyhydroxides is a critical burial pathway for metals in oxic LH sediments, but not for the MIS mat and sediments, consistent with conventional understanding of Mn cycling. Micronutrient trace metals (e.g., Zn) are associated with organic matter regardless of oxygen and sulfide availability. Although U and V are conventionally considered to be organically complexed in suboxic and anoxic conditions, U and organic covary in oxic LH sediments, and Mn-oxyhydroxide cycling dominates V deposition in the anoxic MIS sediments. Significant correlations between Mo and organic matter across all redox regimes have major implications for our interpretations of Mo isotope systematics in the geologic record. Finally, while microbial groups vary between the sampling locales (e.g., the cyanobacteria in the MIS microbial mat are not present in LH sediments), LH and MIS ultimately have similar relationships between microbial assemblages and metal burial, making it difficult to link trace metal burial to microbial metabolisms. Together, these results indicate that bulk sediment trace metal composition does not capture microbiological processes; more robust trace metal geochemistry such as isotopes and speciation may be critical for understanding the intersections between microbiology and sediment geochemistry.

摘要

前寒武纪海洋化学的限制取决于沉积物地球化学。然而,成岩作用和变质作用会破坏原始生物特征,使得在解释地球化学数据时很难考虑生物学因素。古代生态系统的现代类似物可以作为识别沉积物地球化学记录活跃生物圈的有用工具。休伦湖中的中岛落水洞 (MIS) 由于其低氧水化学和在沉积物-水界面表现出多种代谢功能的微生物群落,是浅前寒武纪水的类似物。本研究使用 MIS 沉积物和含氧休伦湖对照点 (LH) 中的沉积物痕量金属含量和微生物丰度来推断痕量金属埋藏的机制。痕量金属被 Mn-oxyhydroxides 吸附是含氧 LH 沉积物中金属的关键埋藏途径,但对于 MIS 垫和沉积物则不是,这与 Mn 循环的传统理解一致。微量元素痕量金属(例如 Zn)与有机物有关,无论氧气和硫的可用性如何。尽管 U 和 V 通常被认为在亚氧和缺氧条件下与有机物络合,但 U 在含氧 LH 沉积物中与有机物共变,而 Mn-oxyhydroxide 循环在缺氧 MIS 沉积物中主导 V 的沉积。Mo 与有机物在所有氧化还原条件下的显著相关性对我们解释地质记录中 Mo 同位素系统有重大影响。最后,尽管微生物群落在采样地点之间有所不同(例如,MIS 微生物垫中的蓝藻不存在于 LH 沉积物中),但 LH 和 MIS 最终在微生物组合与金属埋藏之间具有相似的关系,使得难以将痕量金属埋藏与微生物代谢联系起来。综上所述,这些结果表明,沉积物痕量金属组成并不能捕捉微生物过程;更稳健的痕量金属地球化学,例如同位素和形态,对于理解微生物学和沉积物地球化学之间的交叉点可能至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验