Suppr超能文献

通过原子精确的层间接近度控制二维异质结构中的激子和谷动力学。

Controlling Exciton and Valley Dynamics in Two-Dimensional Heterostructures with Atomically Precise Interlayer Proximity.

作者信息

Zhou Hongzhi, Zhao Yida, Tao Weijian, Li Yujie, Zhou Qiaohui, Zhu Haiming

机构信息

Centre for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China.

出版信息

ACS Nano. 2020 Apr 28;14(4):4618-4625. doi: 10.1021/acsnano.0c00218. Epub 2020 Mar 18.

Abstract

Two-dimensional (2D) materials and heterostructures with strong excitonic effect and spin/valley properties have emerged as an exciting platform for optoelectronic and spin/valleytronic applications. There, precise control of the exciton transformation process (including intralayer to interlayer exciton transition and recombination) and valley polarization process structural tuning is crucial but remains largely unexplored. Here, using hexagonal boron nitride (BN) as an intermediate layer, we show the fine-tuning of exciton and valley dynamics in 2D heterostructures with atomic precision. Both interfacial electron and hole transfer rates decrease exponentially with increasing BN thickness, which can be well-described with quantum tunneling model. The increased spatial separation with BN intercalation weakens the electron-hole Coulomb interaction and significantly prolongs the interlayer exciton population and valley polarization lifetimes in van der Waals (vdW) heterostructures. For example, WSe/WS heterostructures with monolayer BN intercalation exhibit a hole valley polarization lifetime of ∼60 ps at room temperature, which is approximately threefold and 3 orders of magnitude longer than that in WSe/WS heterobilayer without BN and WSe monolayer, respectively. Considering a large family of layered materials, this study suggests a general approach to tailor and optimize exciton and valley properties in vdW heterostructures with atomic precision.

摘要

具有强激子效应和自旋/能谷特性的二维(2D)材料及异质结构,已成为光电子和自旋/能谷电子应用领域令人兴奋的平台。在该领域,精确控制激子转换过程(包括层内激子到层间激子的跃迁和复合)以及能谷极化过程的结构调谐至关重要,但在很大程度上仍未得到充分探索。在此,我们以六方氮化硼(BN)作为中间层,展示了在二维异质结构中以原子精度对激子和能谷动力学进行微调。随着BN厚度增加,界面电子和空穴转移速率均呈指数下降,这可以用量子隧穿模型很好地描述。通过BN插层增加的空间分离减弱了电子 - 空穴库仑相互作用,并显著延长了范德华(vdW)异质结构中层间激子寿命和能谷极化寿命。例如,插入单层BN的WSe₂/WS₂异质结构在室温下表现出约60 ps的空穴能谷极化寿命,分别比没有BN的WSe₂/WS₂异质双层和WSe₂单层中的寿命长约三倍和三个数量级。考虑到大量的层状材料家族,本研究提出了一种以原子精度定制和优化vdW异质结构中激子和能谷特性的通用方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验