Chen Yingying, Liu Zeyi, Li Junze, Cheng Xue, Ma Jiaqi, Wang Haizhen, Li Dehui
School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China.
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
ACS Nano. 2020 Aug 25;14(8):10258-10264. doi: 10.1021/acsnano.0c03624. Epub 2020 Aug 3.
Interlayer excitons have been extensively studied in monolayer transition metal dichalcogenide (TMD) heterobilayers mainly due to the long lifetime, which is beneficial for a wide range of optoelectronic applications. To date, the majority of investigations of interlayer excitons in TMD heterobilayers have been focusing on the geometric arrangement of structures, spin-valley lifetime, and interlayer valley excitons with interlayer hopping rules. Nevertheless, interlayer excitons in TMD heterobilayers strongly depend on the local atomic registry and coupling strength, which increase the complexity of the device fabrication. Here, we report pronounced interlayer exciton emission in two-dimensional (2D) perovskite/monolayer TMD heterostructures without the need of thermal annealing or specific geometric arrangements, and the interlayer exciton emission is rather general among 2D perovskites and monolayer TMDs. Such interlayer exciton emission completely dominates the emission spectrum at 78 K regardless of the stacking sequence, suggesting the robust interlayer coupling in 2D perovskite/monolayer TMD heterostructures. Furthermore, the interlayer exciton emission shows a large blue-shift with increasing laser intensity due to the repulsive dipole-dipole interaction and can persist above 220 K. Importantly, the interlayer exciton emission also possesses robust circular polarization in chiral 2D perovskite/monolayer WSe heterostructures, which can be applied to manipulate the valley degree of freedom for valleytronic devices. Our findings would provide a favorable platform to explore interlayer coupling and related physical processes in 2D perovskites and TMDs and further provoke more investigations into the understanding and controlling of excitonic effects and associated optoelectronic applications in van der Waals heterostructures over a broad-range spectral response.
层间激子在单层过渡金属二卤化物(TMD)异质双层中得到了广泛研究,主要是因为其寿命长,这有利于广泛的光电子应用。迄今为止,对TMD异质双层中层间激子的大多数研究都集中在结构的几何排列、自旋谷寿命以及具有层间跳跃规则的层间谷激子上。然而,TMD异质双层中的层间激子强烈依赖于局部原子配准和耦合强度,这增加了器件制造的复杂性。在这里,我们报道了在二维(2D)钙钛矿/单层TMD异质结构中无需热退火或特定几何排列就能观察到明显的层间激子发射,并且层间激子发射在2D钙钛矿和单层TMD中相当普遍。无论堆叠顺序如何,这种层间激子发射在78 K时完全主导发射光谱,表明2D钙钛矿/单层TMD异质结构中存在强大的层间耦合。此外,由于排斥性偶极-偶极相互作用,层间激子发射随着激光强度的增加而出现大的蓝移,并且可以在220 K以上持续存在。重要的是,层间激子发射在手性2D钙钛矿/单层WSe异质结构中也具有强大的圆偏振,这可用于操纵谷电子器件的谷自由度。我们的发现将为探索2D钙钛矿和TMD中的层间耦合及相关物理过程提供一个有利的平台,并进一步激发更多关于理解和控制范德华异质结构中激子效应及相关光电子应用的研究,涵盖广泛的光谱响应。