Suppr超能文献

使用符号特征对肱二头肌疲劳时的表面肌电信号进行特征描述。

Characterization of surface electromyography signals of biceps brachii muscle in fatigue using symbolic motif features.

机构信息

NIID Lab, Biomedical Engineering Group, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India.

出版信息

Proc Inst Mech Eng H. 2020 Jun;234(6):570-577. doi: 10.1177/0954411920908994. Epub 2020 Mar 17.

Abstract

Exercise-induced muscle damage is a condition which results in the loss of muscle function due to overexertion. Muscle fatigue is a precursor of this phenomenon. The characterization of muscle fatigue plays a crucial role in preventing muscle damage. In this work, an attempt is made to develop signal processing methods to understand the dynamics of the muscle's electrical properties. Surface electromyography signals are recorded from 50 healthy adult volunteers under dynamic curl exercise. The signals are preprocessed, and the first difference signal is computed. Furthermore, ascending and descending slopes are used to generate a binary sequence. The binary sequence of various motif lengths is analyzed using features such as the average symbolic occurrence, modified Shannon entropy, chi-square value, time irreversibility, maximum probability of pattern and forbidden pattern ratio. The progression of muscle fatigue is assessed using trend analysis techniques. The motif length is optimized to maximize the rho value of features. In addition, the first and the last zones of the signal are compared with standard statistical tests. The results indicate that the recorded signals differ in both frequency and amplitude in both inter- and intra-subjects along the period of the experiment. The binary sequence generated has information related to the complexity of the signal. The presence of more repetitive patterns across the motif lengths in the case of fatigue indicates that the signal has lower complexity. In most cases, larger motif length resulted in better rho values. In a comparison of the first and the last zones, most of the extracted features are statistically significant with  < 0.05. It is observed that at the motif length of 13 all the extracted features are significant. This analysis method can be extended to diagnose other neuromuscular conditions.

摘要

运动性肌肉损伤是一种由于过度用力导致肌肉功能丧失的情况。肌肉疲劳是这种现象的前兆。肌肉疲劳的特征在预防肌肉损伤中起着至关重要的作用。在这项工作中,尝试开发信号处理方法来了解肌肉电特性的动力学。从 50 名健康成年志愿者在动态卷曲运动下记录表面肌电图信号。对信号进行预处理,并计算一阶差分信号。此外,上升和下降斜率用于生成二进制序列。使用平均符号出现、修正香农熵、卡方值、时间不可逆性、最大模式概率和禁止模式比等特征分析各种模式长度的二进制序列。使用趋势分析技术评估肌肉疲劳的进展。优化模式长度以最大化特征的 rho 值。此外,还比较了信号的第一和最后区域与标准统计测试。结果表明,在实验过程中,记录的信号在不同的个体和个体之间在频率和幅度上都有所不同。生成的二进制序列具有与信号复杂性相关的信息。在疲劳情况下,整个模式长度上出现更多重复模式表明信号的复杂性较低。在大多数情况下,较大的模式长度会产生更好的 rho 值。在第一区和最后区的比较中,大多数提取的特征具有统计学意义,p 值小于 0.05。观察到在模式长度为 13 时,所有提取的特征都是显著的。这种分析方法可以扩展到诊断其他神经肌肉疾病。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验