Suppr超能文献

用于增强气体分离的吡嗪稠合多孔石墨框架基混合基质膜

Pyrazine-Fused Porous Graphitic Framework-Based Mixed Matrix Membranes for Enhanced Gas Separations.

作者信息

Ma Canghai, Li Xinle, Zhang Jian, Liu Yi, Urban Jeffrey J

机构信息

The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States.

出版信息

ACS Appl Mater Interfaces. 2020 Apr 8;12(14):16922-16929. doi: 10.1021/acsami.0c01378. Epub 2020 Mar 24.

Abstract

Membrane-based separations can mitigate the capital- and energy-intensive challenges associated with traditional thermally driven processes. To further push the boundary of gas separations, mixed matrix membranes (MMMs) have been extensively exploited; however, identifying an optimal nanofiller to boost the separation performance of MMMs beyond Robeson permeability-selectivity upper bounds remains an ongoing challenge. Here, a new class of MMMs based on pyrazine-fused crystalline porous graphitic frameworks (PGFs) is reported. At a loading of 6 wt % PGFs, the MMMs surpass the current H/CH Robeson upper bound, ideally suited for applications such as H regeneration. In addition, the fabricated MMMs exhibit appealing CO separation performance, closely approaching the current Robeson upper bounds for CO separation. Compared with the pristine polymeric membranes, the PGF-based MMMs display a record-high enhancement of gas permeability over 120% while maintaining intrinsic gas selectivities. Highlighting the crucial role of the crystallinity of nanofillers, this study demonstrates a facile and effective approach in formulating high-performance MMMs, complementing state-of-the-art membrane formation processes. The design principles open the door to energy-efficient separations of gas mixtures with enhanced productivity compatible with the current membrane manufacturing.

摘要

基于膜的分离技术可以缓解与传统热驱动过程相关的资本和能源密集型挑战。为了进一步拓展气体分离的边界,混合基质膜(MMMs)已被广泛研究;然而,找到一种最佳的纳米填料以突破Robeson渗透率-选择性上限来提高MMMs的分离性能仍然是一个持续存在的挑战。在此,报道了一类基于吡嗪稠合晶体多孔石墨框架(PGFs)的新型MMMs。在PGFs负载量为6 wt%时,MMMs超过了当前H/CH的Robeson上限,非常适合用于H再生等应用。此外,制备的MMMs表现出吸引人的CO分离性能,接近当前CO分离的Robeson上限。与原始聚合物膜相比,基于PGF的MMMs在保持固有气体选择性的同时,气体渗透率提高了120%以上,创下了记录。这项研究突出了纳米填料结晶度的关键作用,展示了一种简便有效的方法来制备高性能MMMs,补充了现有的膜形成工艺。这些设计原则为高效分离气体混合物打开了大门,提高了与当前膜制造兼容的生产率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验