Suppr超能文献

高钛矿渣的水力活性与微观结构分析

Hydraulic Activity and Microstructure Analysis of High-Titanium Slag.

作者信息

Hou Xinkai, Wang Dan, Shi Yiming, Guo Haitao, He Yingying

机构信息

College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.

School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.

出版信息

Materials (Basel). 2020 Mar 9;13(5):1239. doi: 10.3390/ma13051239.

Abstract

To explain the relationship between the hydration activity of high-titanium slag and its microstructure, the hydration activity of high-titanium slag was determined, then the mineral phase and microstructure characteristics of high-titanium slag glass phase and blast furnace slag were investigated using a series of analytical methods, which contain X-Ray Diffraction (XRD), Scanning Electronic Microscope (SEM), Fourier Transform Infrared spectroscopy (FTIR), Raman spectroscopy, and Nuclear Magnetic Resonance spectroscopy (NMR). The results showed that in slow-cooled high-titanium slag, the hydration inert mineral content was about 98%, and the glass phase content was less than 2%, hence, the hydration activity of slow-cooled high titanium slag accounted for less than 25% of that of the blast furnace slag. The content of the glass phase in water-quenched high-titanium slag was 98%, but the microstructure of the glass phase was very different from that of the blast furnace slag. The glass phase of high-titanium slag has stable forms, which are TiO monomers, chain or sheet units O-Ti-O, and a small amount of 6-coordination Ti. The Ti makes the SiO tetrahedron in a glass phase network not only a monosilicate, but more stable forms of disilicates and chain middle groups also appeared. The relative bridge oxygen number increased to 0.2, hence, the hydration activity of water-quenched high-titanium slag took up less than 37% of that of the blast furnace slag.

摘要

为了解高钛矿渣的水化活性与其微观结构之间的关系,测定了高钛矿渣的水化活性,然后采用一系列分析方法研究了高钛矿渣玻璃相和高炉矿渣的矿相及微观结构特征,这些方法包括X射线衍射(XRD)、扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)、拉曼光谱和核磁共振光谱(NMR)。结果表明,在慢冷高钛矿渣中,水化惰性矿物含量约为98%,玻璃相含量小于2%,因此,慢冷高钛矿渣的水化活性占高炉矿渣水化活性的比例不到25%。水淬高钛矿渣中玻璃相的含量为98%,但其玻璃相的微观结构与高炉矿渣有很大不同。高钛矿渣的玻璃相具有稳定的形态,即TiO单体、链状或片状单元O-Ti-O以及少量的六配位Ti。Ti使得玻璃相网络中的SiO四面体不仅是单硅酸盐,还出现了更稳定的双硅酸盐和链状中间基团形式。相对桥氧数增加到0.2,因此,水淬高钛矿渣的水化活性占高炉矿渣水化活性的比例不到37%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6829/7085047/0ae96bbfa50d/materials-13-01239-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验