Department of Crop Sciences, University of Illinois, Urbana, IL, USA.
Plant Cell Physiol. 2020 Aug 1;61(8):1427-1437. doi: 10.1093/pcp/pcaa039.
Maize inflorescence is a complex phenotype that involves the physical and developmental interplay of multiple traits. Given the evidence that genes could pleiotropically contribute to several of these traits, we used publicly available maize data to assess the ability of multivariate genome-wide association study (GWAS) approaches to identify pleiotropic quantitative trait loci (pQTL). Our analysis of 23 publicly available inflorescence and leaf-related traits in a diversity panel of n = 281 maize lines genotyped with 376,336 markers revealed that the two multivariate GWAS approaches we tested were capable of identifying pQTL in genomic regions coinciding with similar associations found in previous studies. We then conducted a parallel simulation study on the same individuals, where it was shown that multivariate GWAS approaches yielded a higher true-positive quantitative trait nucleotide (QTN) detection rate than comparable univariate approaches for all evaluated simulation settings except for when the correlated simulated traits had a heritability of 0.9. We therefore conclude that the implementation of state-of-the-art multivariate GWAS approaches is a useful tool for dissecting pleiotropy and their more widespread implementation could facilitate the discovery of genes and other biological mechanisms underlying maize inflorescence.
玉米花序是一种复杂的表型,涉及多个性状的物理和发育相互作用。鉴于基因可能对其中的几个性状具有多效性的证据,我们使用了公开可用的玉米数据来评估多变量全基因组关联研究(GWAS)方法识别多效性数量性状位点(pQTL)的能力。我们对 281 条玉米品系的 23 个公开可用的花序和叶片相关性状进行了分析,这些品系使用 376336 个标记进行了基因型分析,结果表明,我们测试的两种多变量 GWAS 方法能够在与先前研究中发现的相似关联相一致的基因组区域中识别 pQTL。然后,我们在同一批个体上进行了平行的模拟研究,结果表明,对于所有评估的模拟设置,除了相关模拟性状的遗传力为 0.9 之外,多变量 GWAS 方法比可比的单变量方法产生了更高的真阳性数量性状核苷酸(QTN)检测率。因此,我们得出结论,实施最先进的多变量 GWAS 方法是剖析多效性的有用工具,它们的更广泛实施可能有助于发现玉米花序的基因和其他生物学机制。