Yang Yang, Liu Lidong, Zhu Hangfei, Bao Nina, Ding Jun, Chen Jing, Yu Kuai
Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518052, China.
Heng Dian Group DMEGC Magnetics Company, Limited, Hengdian Industrial Area, Dongyang City, 322118 Zhejiang Province, China.
ACS Appl Mater Interfaces. 2020 Apr 8;12(14):16609-16619. doi: 10.1021/acsami.0c00920. Epub 2020 Mar 25.
Pristine nonstoichiometric Mn-Zn ferrites were synthesized using a facile "heating-up" method. A route for achieving very stable single-crystal spinel Mn-Zn ferrites with enhanced magnetic performance and Curie temperature was explored using annealing procedures, where the protective gas flow velocities, heating rates, and annealing temperatures were critical in determining the phase structures and performance. The annealed Mn-Zn ferrites showed ultrahigh saturation magnetizations of ∼120 emu/g and an ultrahigh Curie temperature of ∼750 K. Mössbauer spectra indicated that the valence state of Mn was maintained at Mn, and both Mn and Zn were located at A sites in the inverse spinel structure for the highly stable Mn-Zn ferrites. An excellent microwave-absorbing capability in a broad frequency range of 0.1-18 GHz was realized owing to the large magnetic and dielectric losses. The optimal match thickness of Mn-Zn ferrites was found to be 1.5 mm, corresponding to a maximum reflection loss of 22 dB at 16 GHz. These results indicate that the synthesized Mn-Zn ferrites exhibit significant advantages in microwave absorption in the high-frequency range. The demonstrated multicomponent ferrites with high magnetic performance and Curie temperature may find broad applications in various complicated environments, such as those having elevated temperatures.
采用简便的“升温”方法合成了纯净的非化学计量比锰锌铁氧体。利用退火程序探索了一种制备具有增强磁性能和居里温度的非常稳定的单晶尖晶石锰锌铁氧体的途径,其中保护气体流速、加热速率和退火温度对确定相结构和性能至关重要。退火后的锰锌铁氧体表现出约120 emu/g的超高饱和磁化强度和约750 K的超高居里温度。穆斯堡尔谱表明,对于高度稳定的锰锌铁氧体,锰的价态保持为Mn,且Mn和Zn都位于反尖晶石结构的A位。由于大的磁损耗和介电损耗,在0.1 - 18 GHz的宽频率范围内实现了优异的微波吸收能力。发现锰锌铁氧体的最佳匹配厚度为1.5 mm,对应于16 GHz时22 dB的最大反射损耗。这些结果表明,合成的锰锌铁氧体在高频范围内的微波吸收方面具有显著优势。所展示的具有高磁性能和居里温度的多组分铁氧体可能在各种复杂环境中,如高温环境中找到广泛应用。
Nanomaterials (Basel). 2020-11-25
Nanomaterials (Basel). 2021-6-13
ACS Appl Mater Interfaces. 2024-7-3
ACS Appl Mater Interfaces. 2024-7-3