Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, USA.
Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, USA.
AAPS J. 2020 Mar 18;22(3):62. doi: 10.1208/s12248-020-00442-3.
Despite decades of efforts to develop a pharmacotherapy for cocaine abuse treatment, there is still no FDA-approved treatment of diseases associated with this commonly abused drug. Our previously designed highly efficient cocaine hydrolases (CocHs) and the corresponding Fc-fusion proteins (e.g., CocH3-Fc) are recognized as potentially promising therapeutic enzyme candidates for cocaine abuse treatment, but all with limited biological half-lives. In order to prolong the biological half-life and, thus, decrease the required frequency of the enzyme administration for cocaine abuse treatment, we have modeled the Fc-fusion CocH binding with neonatal Fc receptor (FcRn) in the present study. This approach led to the design and testing of CocH3-Fc(M6), a CocH3-Fc mutant with nearly 100-fold increased binding affinity: from K = ~ 4 μM to K = 43 nM. As a result, CocH3-Fc(M6) indeed revealed a markedly prolonged biological half-life (t = 206 ± 7 h or ~ 9 days) in rats, longer than other known Fc-fusion protein drugs such as abatacept and alefacept (for other therapeutic purposes) in the same species (rats). It has been demonstrated that a single dose of 3 mg/kg CocH3-Fc(M6) effectively blocked 20 mg/kg cocaine-induced hyperactivity on day 18 after CocH3-Fc(M6) administration. This is the first attempt to rationally design long-acting Fc-fusion enzyme mutant based on combined computational modeling and experimental measurement of the Fc-fusion CocH binding with FcRn. The similar structure-based design strategy may be used to prolong the biological half-lives of other Fc-fusion protein drugs.
尽管几十年来一直努力开发可卡因滥用治疗的药物治疗方法,但仍然没有 FDA 批准的治疗与这种常用滥用药物相关的疾病的方法。我们之前设计的高效可卡因水解酶(CocHs)和相应的 Fc 融合蛋白(例如,CocH3-Fc)被认为是治疗可卡因滥用的有前途的潜在治疗酶候选物,但它们的生物学半衰期都有限。为了延长半衰期,从而减少治疗可卡因滥用所需的酶给药频率,我们在本研究中模拟了 Fc 融合 CocH 与新生儿 Fc 受体(FcRn)的结合。这种方法导致了 CocH3-Fc(M6)的设计和测试,这是一种 CocH3-Fc 突变体,与野生型相比,结合亲和力提高了近 100 倍:从 K=~4 μM 提高到 K=43 nM。结果,CocH3-Fc(M6)在大鼠中确实表现出明显延长的生物学半衰期(t=206±7 h 或约 9 天),比其他已知的 Fc 融合蛋白药物(如 abatacept 和 alefacept(用于其他治疗目的))更长在同一物种(大鼠)中。已经证明,单次给予 3 mg/kg 的 CocH3-Fc(M6)可有效阻断 CocH3-Fc(M6)给药后第 18 天 20 mg/kg 可卡因引起的过度活跃。这是首次尝试基于 Fc 融合 CocH 与 FcRn 结合的计算建模和实验测量,合理设计长效 Fc 融合酶突变体。类似的基于结构的设计策略可用于延长其他 Fc 融合蛋白药物的半衰期。