Suppr超能文献

对流热风干燥机中山药片()的干燥特性:自适应神经模糊推理系统在干燥动力学预测中的应用

Drying characteristics of yam slices () in a convective hot air dryer: application of ANFIS in the prediction of drying kinetics.

作者信息

Ojediran John O, Okonkwo Clinton E, Adeyi Abiola J, Adeyi Oladayo, Olaniran Abiola F, George Nana E, Olayanju Adeniyi T

机构信息

Department of Agricultural and Biosystems Engineering, College of Engineering, Landmark University, P.M.B 1001, Omu-Aran, Nigeria.

Department of Mechanical Engineering, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.

出版信息

Heliyon. 2020 Mar 11;6(3):e03555. doi: 10.1016/j.heliyon.2020.e03555. eCollection 2020 Mar.

Abstract

This study applied Adaptive Neuro-Fuzzy Inference System (ANFIS) to predict the moisture ratio (MR) during the drying process of yam slices () in a hot air convective dryer. Also the effective diffusivity, activation energy, and rehydration ratio were calculated. The experiments were carried out at three (3) drying air temperatures (50, 60, and 70 °C), air velocities (0.5, 1, and 1.5 m/s), and slice thickness (3, 6, and 9 mm), and the obtained experimental data were used to check the usefulness of ANFIS in the yam drying process. The result showed efficient applicability of ANFIS in predicting the MR at any time of the drying process with a correlation value (R) of 0.98226 and root mean square error value (RMSE) of 0.01702 for the testing stage. The effective diffusivity increased with an increase in air velocity, air temperature, and thickness and the values (6.382E -09 to 1.641E -07 m/s). The activation energy increased with an increase in air velocity, but fluctuate within the air temperatures and thickness used (10.59-54.93 KJ/mol). Rehydration ratio was highest at air velocity×air temperature×thickness (1.5 m/s×70 °C × 3 mm), and lowest at air velocity × air temperature×thickness (0.5 m/s×70 °C × 3 mm). The result showed that the drying kinetics of existed in the falling rate period. The drying time decreased with increased temperature, air velocity, and decreased slice thickness. These established results are applicable in process and equipment design, analysis and prediction of hot air convective drying of yam () slices.

摘要

本研究应用自适应神经模糊推理系统(ANFIS)来预测热风对流干燥器中山药片干燥过程的含水率(MR)。同时还计算了有效扩散系数、活化能和复水率。实验在三种干燥空气温度(50、60和70℃)、空气流速(0.5、1和1.5m/s)以及切片厚度(3、6和9mm)条件下进行,所获得的实验数据用于检验ANFIS在山药干燥过程中的实用性。结果表明,ANFIS在预测干燥过程中任何时刻的MR方面具有高效适用性,测试阶段的相关系数(R)为0.98226,均方根误差值(RMSE)为0.01702。有效扩散系数随空气流速、空气温度和厚度的增加而增大,其值为(6.382E -09至1.641E -07m/s)。活化能随空气流速的增加而增加,但在所使用的空气温度和厚度范围内波动(10.59 - 54.93kJ/mol)。复水率在空气流速×空气温度×厚度(1.5m/s×70℃×3mm)时最高,在空气流速×空气温度×厚度(0.5m/s×70℃×3mm)时最低。结果表明,山药片的干燥动力学处于降速阶段。干燥时间随温度、空气流速的增加以及切片厚度的减小而减少。这些既定结果适用于山药片热风对流干燥的工艺和设备设计、分析及预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验