Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama, United States of America.
Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America.
PLoS One. 2020 Mar 19;15(3):e0229933. doi: 10.1371/journal.pone.0229933. eCollection 2020.
Creatine Kinase (CK) reaction plays an important role in energy metabolism and estimate of its reaction rate constant in heart provides important insight into cardiac energetics. Fast saturation transfer method ([Formula: see text] nominal) to measure CK reaction rate constant (kf) was previously demonstrated in open chest swine hearts. The goal of this work is to further develop this method for measuring the kf in human myocardium at 7T. [Formula: see text] approach is combined with 1D-ISIS/2D-CSI for in vivo spatial localization and myocardial CK forward rate constant was then measured in 7 volunteers at 7T.
[Formula: see text] method uses two partially relaxed saturation transfer (ST) spectra and correction factor to determine CK rate constant. Correction factor is determined by numerical simulation of Bloch McConnell equations using known spin and experimental parameters. Optimal parameters and error estimate in calculation of CK reaction rate constant were determined by simulations. The technique was validated in calf muscles by direct comparison with saturation transfer measurements. [Formula: see text] pulse sequence was incorporated with 1D-image selected in vivo spectroscopy, combined with 2D-chemical shift spectroscopic imaging (1D-ISIS/2D-CSI) for studies in heart. The myocardial CK reaction rate constant was then measured in 7 volunteers.
Skeletal muscle kf determined by conventional approach and [Formula: see text] approach were the same 0.31 ± 0.02 s-1 and 0.30 ± 0.04 s-1 demonstrating the validity of the technique. Results are reported as mean ± SD. Myocardial CK reaction rate constant was 0.29 ± 0.05 s-1, consistent with previously reported studies.
[Formula: see text] method enables acquisition of 31P saturation transfer MRS under partially relaxed conditions and enables 2D-CSI of kf in myocardium. This work enables applications for in vivo CSI imaging of energetics in heart and other organs in clinically relevant acquisition time.
肌酸激酶(CK)反应在能量代谢中起着重要作用,估计其在心脏中的反应速率常数可以提供对心脏能量学的重要见解。以前已经在开胸猪心中证明了使用快速饱和转移方法([公式:见文本] 名义)测量 CK 反应速率常数(kf)。这项工作的目标是进一步开发在 7T 下测量人体心肌中 kf 的方法。[公式:见文本]方法与 1D-ISIS/2D-CSI 相结合,用于体内空间定位,然后在 7 名志愿者中在 7T 下测量心肌 CK 前向速率常数。
[公式:见文本]方法使用两个部分松弛饱和转移(ST)谱和校正因子来确定 CK 速率常数。校正因子是通过使用已知的自旋和实验参数数值模拟 Bloch McConnell 方程来确定的。通过模拟确定了计算 CK 反应速率常数的最佳参数和误差估计。该技术通过与饱和转移测量的直接比较在小牛肌肉中得到验证。[公式:见文本]脉冲序列与 1D-体内选择光谱学相结合,与 2D-化学位移波谱成像(1D-ISIS/2D-CSI)相结合,用于心脏研究。然后在 7 名志愿者中测量心肌 CK 反应速率常数。
通过传统方法和[公式:见文本]方法确定的骨骼肌 kf 相同,分别为 0.31±0.02s-1 和 0.30±0.04s-1,证明了该技术的有效性。结果以平均值±标准差表示。心肌 CK 反应速率常数为 0.29±0.05s-1,与以前的报道研究一致。
[公式:见文本]方法能够在部分松弛条件下获取 31P 饱和转移 MRS,并能够在心肌中进行 kf 的 2D-CSI。这项工作为在临床相关采集时间内在体内进行心脏和其他器官的能量学 CSI 成像应用奠定了基础。