Departamento de Neurobiología Funcional y de Sistemas, Grupo de Neuroinmunología, Instituto Cajal, CSIC, Madrid, Spain.
Present address: Grupo de Investigación en Linfomas, Instituto Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Majadahonda, Madrid, Spain.
J Neuroinflammation. 2020 Mar 19;17(1):88. doi: 10.1186/s12974-020-01734-3.
The participation of microglia in CNS development and homeostasis indicate that these cells are pivotal for the regeneration that occurs after demyelination. The clearance of myelin debris and the inflammatory-dependent activation of local oligodendrocyte progenitor cells in a demyelinated lesion is dependent on the activation of M2c microglia, which display both phagocytic and healing functions. Emerging interest has been raised about the role of Wnt/β-catenin signaling in oligodendrogenesis and myelination. Besides, cytokines and growth factors released by microglia can control the survival, proliferation, migration, and differentiation of neural stem cells (NSCs), contributing to remyelination through the oligodendrocyte specification of this adult neurogenic niche.
TMEV-IDD model was used to study the contribution of dorsal SVZ stem cells to newly born oligodendrocytes in the corpus callosum following demyelination by (i) en-face dorsal SVZ preparations; (ii) immunohistochemistry; and (iii) cellular tracking. By RT-PCR, we analyzed the expression of Wnt proteins in demyelinated and remyelinating corpus callosum. Using in vitro approaches with microglia cultures and embryonic NSCs, we studied the role of purified myelin, Wnt proteins, and polarized microglia-conditioned medium to NSC proliferation and differentiation. One-way ANOVA followed by Bonferroni's post-hoc test, or a Student's t test were used to establish statistical significance.
The demyelination caused by TMEV infection is paralleled by an increase in B1 cells and pinwheels in the dorsal SVZ, resulting in the mobilization of SVZ proliferative progenitors and their differentiation into mature oligodendrocytes. Demyelination decreased the gene expression of Wnt5a and Wnt7a, which was restored during remyelination. In vitro approaches show that Wnt3a enhances NSC proliferation, while Wnt7a and myelin debris promotes oligodendrogenesis from NSCs. As phagocytic M2c microglia secrete Wnt 7a, their conditioned media was found to induce Wnt/β-Catenin signaling in NSCs promoting an oligodendroglial fate.
We define here the contribution of microglia to Wnt production depending on their activation state, with M1 microglia secreting the Wnt5a protein and M2c microglia secreting Wnt7a. Collectively, our data reveal the role of reparative microglia in NSC oligodendrogenesis with the involvement of Wnt7a.
小胶质细胞参与中枢神经系统的发育和稳态表明,这些细胞对于脱髓鞘后发生的再生至关重要。脱髓鞘病变中髓鞘碎片的清除和炎症依赖性局部少突胶质前体细胞的激活依赖于 M2c 小胶质细胞的激活,M2c 小胶质细胞具有吞噬和修复功能。人们对 Wnt/β-连环蛋白信号在少突胶质细胞发生和髓鞘形成中的作用产生了浓厚的兴趣。此外,小胶质细胞释放的细胞因子和生长因子可以控制神经干细胞 (NSC) 的存活、增殖、迁移和分化,通过少突胶质细胞对成年神经发生龛的特化来促进髓鞘再生。
利用 TMEV-IDD 模型,通过(i)正面 SVZ 制备物;(ii)免疫组织化学;(iii)细胞追踪,研究背侧 SVZ 干细胞对脱髓鞘后胼胝体中新生成的少突胶质细胞的贡献。通过 RT-PCR,我们分析了脱髓鞘和再髓鞘胼胝体中 Wnt 蛋白的表达。通过小胶质细胞培养和胚胎 NSC 的体外方法,我们研究了纯化髓鞘、Wnt 蛋白和极化小胶质细胞条件培养基对 NSC 增殖和分化的作用。使用单因素方差分析 (ANOVA) followed by Bonferroni 事后检验,或学生 t 检验来确定统计学意义。
TMEV 感染引起的脱髓鞘与背侧 SVZ 中 B1 细胞和风车的增加平行,导致 SVZ 增殖祖细胞的动员及其分化为成熟的少突胶质细胞。脱髓鞘降低了 Wnt5a 和 Wnt7a 的基因表达,在再髓鞘过程中得到恢复。体外方法表明,Wnt3a 增强 NSC 的增殖,而 Wnt7a 和髓鞘碎片促进 NSCs 向少突胶质细胞分化。作为吞噬性 M2c 小胶质细胞分泌 Wnt7a,其条件培养基被发现诱导 NSCs 中的 Wnt/β-Catenin 信号转导,促进少突胶质细胞命运。
我们在这里定义了小胶质细胞根据其激活状态产生 Wnt 的贡献,其中 M1 小胶质细胞分泌 Wnt5a 蛋白,M2c 小胶质细胞分泌 Wnt7a。总的来说,我们的数据揭示了修复性小胶质细胞在 NSC 少突胶质细胞发生中的作用,其中涉及 Wnt7a。