Suppr超能文献

通过中枢神经系统的神经胶质网络实现钾离子缓冲/分散的路线图。

A roadmap for potassium buffering/dispersion via the glial network of the CNS.

机构信息

School of Biomedical Sciences, Kent State University, Kent, OH, USA.

出版信息

Neurochem Int. 2020 Jun;136:104727. doi: 10.1016/j.neuint.2020.104727. Epub 2020 Mar 16.

Abstract

Glia use multiple mechanisms to mediate potassium fluxes that support neuronal function. In addition to changes in potassium levels within synapses, these ions are dynamically dispersed through the interstitial parenchyma, perivascular spaces, leptomeninges, cerebrospinal fluid, choroid plexus, blood, vitreous, and endolymph. Neural circuits drive diversity in the glia that buffer potassium and this is reciprocal. Glia mediate buffering of potassium locally at glial-neuronal interfaces and via widespread networked connections. Control of potassium levels in the central nervous system is mediated by mechanisms operating at various loci with complexity that is difficult to model. However, major components of networked glial buffering are known. The role that potassium buffering plays in homeostasis of the CNS underlies some pathologic phenomena. An overview of potassium fluxes in the CNS is relevant for understanding consequences of pathogenic sequence variants in genes that encode potassium buffering proteins. Potassium flows in the CNS are described as follows: K1, the coordinated potassium fluxes within the astrocytic cradle around the synapse; K2, temporary storage of potassium within astrocytic processes in proposed microdomains; K3, potassium fluxes between oligodendrocytes and astrocytes; K4, potassium fluxes between astrocytes; K5, astrocytic potassium flux mediation of neurovasular coupling; K6, CSF delivery of potassium to perivascular spaces with dispersion to interstitial fluid between astrocytic endfeet; K7, astrocytic delivery of potassium to CSF and K8, choroid plexus (modified glia) regulation of potassium at the blood-CSF barrier. Components, mainly potassium channels, transporters, connexins and modulators, and the pathogenic sequence variants of their genes with the associated diseases are described.

摘要

胶质细胞通过多种机制来介导钾离子流,以支持神经元功能。除了突触内钾离子水平的变化外,这些离子还通过间质实质、血管周围间隙、软脑膜、脑脊液、脉络丛、血液、玻璃体和内淋巴动态扩散。神经回路驱动胶质细胞缓冲钾离子的多样性,这是相互的。胶质细胞在胶质细胞-神经元界面局部缓冲钾离子,并通过广泛的网络连接进行缓冲。中枢神经系统中钾离子水平的控制是通过在不同部位发挥作用的机制来实现的,其复杂性难以建模。然而,已知网络胶质缓冲的主要组成部分。钾离子缓冲在中枢神经系统稳态中的作用是某些病理现象的基础。中枢神经系统钾离子流的概述对于理解编码钾离子缓冲蛋白的基因中致病序列变异的后果具有重要意义。中枢神经系统中的钾离子流如下描述:K1,突触周围星形胶质细胞摇篮内协调的钾离子流;K2,拟议微域内星形胶质细胞突起内钾离子的临时储存;K3,少突胶质细胞和星形胶质细胞之间的钾离子流;K4,星形胶质细胞之间的钾离子流;K5,星形胶质细胞介导的神经血管偶联钾离子流;K6,CSF 将钾离子输送到血管周围间隙,并在星形胶质细胞足突之间的间质液中扩散;K7,星形胶质细胞将钾离子输送到 CSF 中,K8,脉络丛(修饰后的胶质细胞)调节血脑屏障处的钾离子。描述了主要为钾离子通道、转运体、连接蛋白和调节剂及其基因的致病序列变异,以及它们相关的疾病。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验