Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France.
Université de Paris, CNRS, INSERM, B3OA, F-75010 Paris, France; Ecole Nationale Vétérinaire d'Alfort, B3OA, F-94700 Maisons-Alfort, France.
Acta Biomater. 2020 Jun;109:254-266. doi: 10.1016/j.actbio.2020.03.016. Epub 2020 Mar 17.
The architectural features of synthetic bone grafts are key parameters for regulating cell functions and tissue formation for the successful repair of bone defects. In this regard, macroporous structures based on triply-periodic minimal surfaces (TPMS) are considered to have untapped potential. In the present study, custom-made implants based on a gyroid structure, with (GPRC) and without (GP) a cortical-like reinforcement, were specifically designed to fit an intended bone defect in rat femurs. Sintered hydroxyapatite implants were produced using a dedicated additive manufacturing technology and their morphological, physico-chemical and mechanical features were characterized. The implants' integrity and ability to support bone ingrowth were assessed after 4, 6 and 8 weeks of implantation in a 3-mm-long, femoral defect in Lewis rats. GP and GPRC implants were manufactured with comparable macro- to nano-architectures. Cortical-like reinforcement significantly improved implant effective stiffness and resistance to fracture after implantation. This cortical-like reinforcement also concentrated new bone formation in the core of the GPRC implants, without affecting newly formed bone quantity or maturity. This study showed, for the first time, that custom-made TPMS-based bioceramic implants could be produced and successfully implanted in load-bearing sites. Adding a cortical-like reinforcement (GPRC implants) was a relevant solution to improve implant mechanical resistance, and changed osteogenic mechanism compared to the GP implants. STATEMENT OF SIGNIFICANCE: Architectural features are known to be key parameters for successful bone repair using synthetic bioceramic bone graft. So far, conventional manufacturing techniques, lacking reproducibility and complete control of the implant macro-architecture, impeded the exploration of complex architectures, such as triply periodic minimal surfaces (TPMS), which are foreseen to have an unrivaled potential for bone repair. Using a new additive manufacturing process, macroporous TPMS-based bioceramics implants were produced in calcium phosphate, characterized and implanted in a femoral defect in rats. The results showed, for the first time, that such macroporous implants can be successfully implanted in anatomical load-bearing sites when a cortical-like outer shell is added. This outer shell also concentrated new bone formation in the implant center, without affecting new bone quantity or maturity.
合成骨移植物的结构特征是调节细胞功能和组织形成的关键参数,对于成功修复骨缺损至关重要。在这方面,基于三重周期性极小曲面(TPMS)的大孔结构被认为具有尚未开发的潜力。在本研究中,专门设计了基于胞状结构的定制植入物(GPRC)和没有(GP)皮质样增强的定制植入物,以适应大鼠股骨中的预期骨缺损。使用专用的增材制造技术生产了烧结羟基磷灰石植入物,并对其形态、物理化学和机械性能进行了表征。在刘易斯大鼠 3mm 长股骨缺损中植入 4、6 和 8 周后,评估了植入物的完整性和支持骨向内生长的能力。GP 和 GPRC 植入物采用类似的宏观到纳米结构制造。皮质样增强显著提高了植入物的有效刚度和植入后的抗断裂能力。这种皮质样增强还将新骨形成集中在 GPRC 植入物的核心部位,而不会影响新形成的骨量或成熟度。本研究首次表明,可以生产定制的基于 TPMS 的生物陶瓷植入物并将其成功植入承重部位。添加皮质样增强(GPRC 植入物)是一种有效的解决方案,可以提高植入物的机械阻力,并改变与 GP 植入物相比的成骨机制。
结构特征是使用合成生物陶瓷骨移植物成功修复骨的关键参数。到目前为止,缺乏可重复性和对植入物宏观结构完全控制的传统制造技术阻碍了复杂结构的探索,例如三重周期性极小曲面(TPMS),这些结构有望为骨修复提供无与伦比的潜力。使用新的增材制造工艺,在磷酸钙中生产了大孔基于 TPMS 的生物陶瓷植入物,并在大鼠股骨缺损中进行了植入。结果表明,首次在添加皮质样外壳的情况下,这种大孔植入物可以成功植入解剖学承重部位。这种外壳还将新骨形成集中在植入物中心,而不会影响新骨的数量或成熟度。