Han Bin, Jiang Wei, Liu Haijie, Wang Junjie, Zheng Kai, Cui Pan, Feng Yan, Dang Chun, Bu Yali, Wang Qing Mei, Ju Zhenyu, Hao Junwei
Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
Theranostics. 2020 Feb 3;10(6):2832-2848. doi: 10.7150/thno.37119. eCollection 2020.
: Mitochondrial dysfunction and oxidative stress occur in vascular dementia (VaD), but the specific molecular mechanism regulating these events remains unclear. Peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α) is a master regulator for mitochondrial function. This study aims to investigate whether PGC-1α is involved in the pathophysiology of VaD. : We firstly generated Eno2-Cre mice to induce neuron-specific overexpression of PGC-1α by crossbreeding mice with Eno2-cre mice. Then, the mice were subjected to bilateral common carotid artery stenosis to induce chronic cerebral hypoperfusion. Neurological function and hippocampal PGC-1α expression was evaluated. Next, RNA-Seq analysis and Seahorse assay were performed on the hippocampal neurons. In addition, mitochondrial antioxidants, uncoupling proteins, ROS production and the activation of glial cells were also measured. : Our results showed that hippocampal PGC-1α expression is down-regulated in the mouse VaD model induced by chronic cerebral hypoperfusion. In contrast, neuronal PGC-1α overexpression significantly ameliorated cognitive deficits. RNA-Seq analysis indicated that PGC-1α improved energy metabolism of neurons under hypoxic condition, and Seahorse assay confirmed that PGC-1α increases the metabolic activity of neurons. Further study demonstrated that PGC-1α boosted the expressions of mitochondrial antioxidants and uncoupling proteins (UCPs), including SOD2, Prx3, GPx1, UCP2, UCP4 and UCP5, which in turn reduced reactive oxygen species (ROS) production. Moreover, the activation of microglia and astrocytes was also found to decrease in the hippocampus. All of these changes greatly contributed to protect hippocampal neurons against ischemic insults. : PGC-1α could suppress the excessive ROS and neuroinflammation in the hippocampus, opening up a potential therapeutic target for cognitive impairment.
线粒体功能障碍和氧化应激发生在血管性痴呆(VaD)中,但调节这些事件的具体分子机制仍不清楚。过氧化物酶体增殖物激活受体γ共激活因子1α(PGC-1α)是线粒体功能的主要调节因子。本研究旨在探讨PGC-1α是否参与VaD的病理生理学过程。
我们首先通过将小鼠与Eno2-Cre小鼠杂交,生成Eno2-Cre小鼠,以诱导神经元特异性过表达PGC-1α。然后,对小鼠进行双侧颈总动脉狭窄手术,以诱导慢性脑灌注不足。评估神经功能和海马体中PGC-1α的表达。接下来,对海马神经元进行RNA测序分析和海马实验。此外,还测量了线粒体抗氧化剂、解偶联蛋白、活性氧生成以及胶质细胞的激活情况。
我们的结果表明,在慢性脑灌注不足诱导的小鼠VaD模型中,海马体中PGC-1α的表达下调。相反,神经元PGC-1α的过表达显著改善了认知缺陷。RNA测序分析表明,PGC-1α在缺氧条件下改善了神经元的能量代谢,并通过海马实验证实PGC-1α增加了神经元的代谢活性。进一步的研究表明,PGC-1α促进了线粒体抗氧化剂和解偶联蛋白(UCPs)的表达,包括超氧化物歧化酶2(SOD2)、过氧化物还原酶3(Prx3)、谷胱甘肽过氧化物酶1(GPx1)、解偶联蛋白2(UCP2)、解偶联蛋白4(UCP4)和解偶联蛋白5(UCP5),这反过来又减少了活性氧(ROS)的产生。此外,还发现海马体中微胶质细胞和星形胶质细胞的激活减少。所有这些变化都极大地有助于保护海马神经元免受缺血性损伤。
PGC-1α可以抑制海马体中过量的活性氧和神经炎症,为认知障碍开辟了一个潜在的治疗靶点。