Suppr超能文献

利用核酸酶工程构建高稳健性 DNA 分子回路。

Engineering high-robustness DNA molecular circuits by utilizing nucleases.

机构信息

College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

出版信息

Nanoscale. 2020 Apr 3;12(13):6964-6970. doi: 10.1039/c9nr09979d.

Abstract

Toehold-mediated strand displacement (TMSD) as an important player in DNA nanotechnology has been widely utilized for engineering non-enzymatic molecular circuits. However, these circuits suffer from uncontrollable leakage and unsatisfactory response speed. We utilized site-specific and sequence-independent nucleases to engineer high- robustness DNA molecular circuits. First, we found that the kinetics of the APE1-catalyzed reaction is highly dependent on substrate stability, allowing for the elimination of asymptotic leakage of DNA split circuits. Second, we obtained strict substrate preference of λ exonuclease (λexo) by optimizing the reaction conditions. Robust single-layer and cascade gates with leak resistance were established by using λ exo. Owing to the remarkably fast kinetics of these nucleases, all the circuits yield a high speed of computation. Compared to TMSD-based approaches, nuclease-powered circuits render advanced features such as leakage resistance, hundreds of times higher speed, and simplified structures, representing a class of promising artificial molecule systems.

摘要

适体介导的链置换(TMSD)作为 DNA 纳米技术中的重要组成部分,已被广泛应用于工程非酶分子电路。然而,这些电路存在不可控的泄漏和不理想的响应速度。我们利用位点特异性和序列独立性的核酸酶来设计高稳健性的 DNA 分子电路。首先,我们发现 APE1 催化反应的动力学高度依赖于底物稳定性,从而消除了 DNA 分裂电路的渐近泄漏。其次,通过优化反应条件,我们获得了 λ 核酸外切酶(λexo)的严格底物偏好性。通过使用 λ exo 建立了具有抗漏性能的稳健单层和级联门。由于这些核酸酶具有显著快速的动力学特性,所有的电路都具有高速的计算能力。与基于 TMSD 的方法相比,核酸酶驱动的电路具有抗泄漏、速度提高数百倍以及结构简化等先进特性,代表了一类有前途的人工分子系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验