Lu Wenzheng, Chow Tsz Him, Lai Sze Nga, Zheng Bo, Wang Jianfang
Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
ACS Appl Mater Interfaces. 2020 Apr 15;12(15):17733-17744. doi: 10.1021/acsami.0c01562. Epub 2020 Mar 31.
Plasmonic color generation has attracted much research interest because of the unique optical properties of plasmonic nanocrystals that are promising for chromatic applications, such as flat-panel displays, smart windows, and wearable devices. Low-cost, monodisperse plasmonic nanocrystals supporting strong localized surface plasmon resonances are favorable for the generation of plasmonic colors. However, many implementations so far have either a single static state or complexities in the particle alignment and switching mechanism for generating multiple displaying states. Herein, we report on a facile and robust approach for realizing the electrochemical switching of plasmonic colors out of colloidal plasmonic nanocrystals. The metal nanocrystals are coated with a layer of polyaniline, whose refractive index and optical absorption are reversibly switched through the variation of an applied electrochemical potential. The change in refractive index and optical absorption results in the modulation of the plasmonic scattering intensity with a depth of 11 dB. The electrochemical switching process is fast (∼5 ms) and stable (over 1000 switching cycles). A device configuration is further demonstrated for switching plasmonic color patterns in a transparent electrochemical device, which is made from indium tin oxide electrodes and a polyvinyl alcohol solid electrolyte. Our control of plasmonic colors provides a favorable platform for engineering low-cost and high-performance miniaturized optical devices.
由于等离子体纳米晶体具有独特的光学性质,有望用于平板显示器、智能窗户和可穿戴设备等彩色应用,因此等离子体颜色生成引起了广泛的研究兴趣。低成本、单分散且支持强局域表面等离子体共振的等离子体纳米晶体有利于产生等离子体颜色。然而,迄今为止,许多实现方式要么只有单一的静态状态,要么在产生多个显示状态的粒子排列和切换机制方面存在复杂性。在此,我们报告一种简便且稳健的方法,用于实现基于胶体等离子体纳米晶体的等离子体颜色的电化学切换。金属纳米晶体涂覆有一层聚苯胺,其折射率和光吸收通过施加的电化学势的变化而可逆地切换。折射率和光吸收的变化导致等离子体散射强度调制,调制深度达11 dB。电化学切换过程快速(约5毫秒)且稳定(超过1000个切换周期)。还展示了一种器件配置,用于在由氧化铟锡电极和聚乙烯醇固体电解质制成的透明电化学器件中切换等离子体颜色图案。我们对等离子体颜色的控制为制造低成本、高性能的小型化光学器件提供了一个良好的平台。